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EDITORIAL

Editorial

A
utumn has been good to us and we received enough material to publish a double issue

packed with really good stuff! We have a tutorial on ExSTraCS, a new model of learning

classifier system, developed by Ryan J. Urbanowicz for complex classification problems like

the ones found in bioinformatics and epidemiology. We have a paper by Ricky Vesel who uses

genetic algorithms in Race Optimal, a project aimed at creating an effective and fully automated process

for racing line optimization to apply to all the circuits around the world. We also have a paper by Alwyn V.

Husselmann about an approach to visualize populations of Karva expressions, also used for the cover of

the newsletter. Carola Doerr and Gabriela Ochoa tell us about the 2014 Women @ GECCO workshop while

Nadia Alshahwan reports on the 2014 Symposium on Search-Based Software Engineering, which was held

in the beautiful Fortaleza, Brazil. At the end, there are the summaries of two new PhD theses available.

One by Jacob Schrum (Evolving Multimodal Behavior Through Modular Multiobjective Neuroevolution),

one by Alwyn V. Husselmann (Data-parallel Structural Optimisation in Agent-based Models). That’s a lot!

We hope Winter will be even better and we look forward to receiving more contributions to complete the

last issue of this volume. So if you have something interesting for the newsletter, just drop an email!

Do you realize that the deadline to submit your paper to the next GECCO is less than three months away?

Yup! It is time to start the engine, run those experiments left behind, and let the CPU/GPU fans roar until

February 4! This year there will be no deadline extension, pretty scary huh? You surely don’t want to miss

the next GECCO in Madrid.

This issue was possible only with the help of Ryan J. Urbanowicz, Ricky Vesel, Alwyn V. Husselmann, Carola

Doerr, Gabriela Ochoa, Nadia Alshahwan, William B. Langdon, Daniele Loiacono, Cristiana Bolchini, Viola

Schiaffonati, and Francesco Amigoni.
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Rule-Based Machine Learning Classification and
Knowledge Discovery for Complex Problems

Ryan J. Urbanowicz — Department of Genetics, Dartmouth College, USA — ryan.j.urbanowicz@dartmouth.edu

L
earning classifier systems (LCSs) are an advantageous, power-

ful, and flexible class of algorithms that have, to date, been un-

derutilized largely due to the perception that they are difficult

to apply, evaluate, and interpret. ExSTraCS is an Extended

Supervised Tracking and Classifying System based on the Michigan-Style

LCS architecture [4]. It offers an accessible, user friendly LCS platform

for supervised rule-based machine learning, classification, data mining,

prediction, and knowledge discovery. ExSTraCS seeks to make no as-

sumptions about the data, and is therefore model free and particularly

well suited to complex problems that are multi-factorial, interacting (non-

linear), heterogeneous, noisy, class imbalanced, multi-class, or larger-

scale. ExSTraCS is written in Python, open source, well documented, and

freely available at sourceforge.net.

Introduction

This article begins with a brief description of the ExSTraCS algorithm,

it’s unique features, and key abilities. The overall focus will be to high-

light how ExSTraCS seeks to make the application of an LCS algorithm

approachable. A simple example problem is used illustrate this.

The ExSTraCS algorithm is descended from a lineage of Michigan-style

LCS algorithms founded on the architecture of XCS [9], the most suc-

cessful and best-studied LCS algorithm to date. ExSTraCS is most closely

related to UCS [2] which replaced XCS’s reinforcement learning scheme

with a supervised learning strategy to deal explicitly with single-step

problems such as classification and data mining.

Michigan-style LCSs are rule-based machine learning algorithms that

uniquely distribute learned patterns over a collaborative population of

individually interpretable (IF:THEN) rules/classifiers. This makes them

somewhat of ensemble learners all on their own. These rule-based al-

gorithms combine the global search of evolutionary computing (i.e. a

genetic algorithm) with the local optimization of reinforcement or super-

vised learning. They also apply iterative, rather than batch-wise learning,

meaning that rules are evaluated and evolved one instance at a time.

These characteristics make Michigan-style LCS’s proficient at flexibly and

adaptively capturing complex and diverse problem space niches such as

those found in multi-class, latent-class, or heterogeneous problem do-

mains. Michigan-style LCSs are also naturally multi-objective, evolving

rules toward maximal accuracy and generality/simplicity. They can also

offer transparency, in that individual rules can be unambiguously inter-

preted, and straightforward strategies have been developed to derive

global knowledge from the rule population as a whole through the use of

LCS rule-population metrics, significance testing, and visualizations [7].

In short, if you’re dealing with a hard or distributed problem and inter-

pretation is as important to you as predictive/classification performance,

consider using an LCS.

Algorithm Overview

ExSTraCS was primarily developed for application to bioinformatic and

epidemiological problems involving the detection, modeling, and charac-

terization of predictive attributes associated with common complex dis-

eases [4].
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In these types of problems, associations can be very noisy, epistatic,

heterogeneous, or involve an unknown number of predictive attributes

within a larger set of potentially predictive attributes. The main goals

in the design and ongoing development of ExSTraCS is to (1) allow data

driven learning by minimizing data/model assumptions, (2) optimize su-

pervised learning within the Michigan-style LCS architecture, (3) expand

algorithm flexibility to accommodate the integration of different data

types (e.g. discrete and continuous variables, missing data, balanced/im-

balanced data, binary or multi-class endpoints), (4) improve scalability,

and (5) improve factors contributing to ease of use including run param-

eter selection, documentation, output, interpretation, and run time ef-

ficiency. While developed with bioinformatics applications in mind, ExS-

TraCS would be well suited to any supervised learning problem, especially

when complexity is an issue.

ExSTraCS brings together a number of recently developed LCS advance-

ments designed to provide users with better performance, data flexibility,

and new ways to get information out of LCS learning. All features are di-

rectly integrated into ExSTraCS and utilized by default, allowing the user

to run the algorithm without having to worry about setting a large number

of run parameters. Key features include; (1) Adaptive data management:

which automatically differentiates discrete from continuous attributes in

a dataset loaded by the user. (2) Mixed discrete-continuous rule repre-

sentation: that allows the LCS to learn on datasets with both discrete

and continuous attributes [1]. (3) Expert knowledge discovery and rule

initialization: that pre-processes the dataset using one of four built-in

attribute weighting algorithms, assigning scores to attributes based on

their likelihood of being class-predictive, and applying these scores to a

smart rule initialization (a.k.a. rule covering) [8]. (4) Attribute tracking: a

mechanism that updates and stores attribute weights for each instance in

the training dataset as a form of long-term memory. Post-training, these

scores can be applied to characterize patterns of association such as het-

erogeneity within the dataset [6]. (5) Attribute feedback: a mechanism

that utilizes attribute tracking scores in the genetic algorithm to proba-

bilistically utilize attribute combinations as building blocks for new rules

[6]. (6) Rule compaction: that post-processes the rule population, consol-

idating the rule population removing poor, redundant, or inexperienced

rules with the goal of facilitating interpretation and knowledge discovery.

Six built in rule-compaction strategies are available within ExSTraCS [3].

How It Works

The ExSTraCS algorithm is comprised of a set of interacting mechanisms

working together to evolve and sustain an adapting set of accurate and

general rules. Figure 1 gives a schematic overview of the ExSTraCS algo-

rithm analysis pipeline. This pipeline operates in three major phases (A)

data pre-processing, (B) algorithm learning/training, and ends with (C)

rule population post-processing.

As summarized in [4], (A) ExSTraCS will accept a finite training dataset

and an optional testing dataset in order to evaluate the predictive perfor-

mance of the algorithm. Adaptive data management initially determines

and stores key characteristics of this dataset for use during learning iter-

ations. Expert knowledge (EK) attribute weights are loaded or discovered

from the dataset. (B) The core ExSTraCS algorithm repeats the following

10 steps up to a maximum number of learning iterations: (1) A single

training instance is taken from the dataset without replacement. (2) The

training instance is passed to a population [P] of rules that is initially

empty. A rule is represented as a simple IF/THEN statement comprised

of a condition (i.e. specified attributes with corresponding states), and

the class prediction. (3) A match set [M] is formed, that includes any

rule in [P] that has a condition matching the training instance. (4) [M] is

divided into a correct set [C] and an incorrect set [I] based on whether

each rule specified the correct or incorrect class. (5) If, after steps 3 and

4, [C] is empty (i.e. no correct rules were found), covering applies EK to

intelligently generate a matching and ’correct’ rule added to [M] and [C].

(6) For every rule in [P], a number of parameters are maintained and up-

dated throughout the learning process such as: numerosity (the number

of copies of a given rule in [P]), rule accuracy, which is the proportion

of times that a rule has been in a [C] divided by the times it has been

in a [M]; and rule fitness, which is a function of rule accuracy and the

parameter nu. Rule parameters are updated for rules within [C] and [I].

(7) Subsumption, a rule generalization mechanism is applied to [C] [9].

A similar subsumption mechanism is also applied to new rules generated

by the genetic algorithm (GA). (8) Rules in [C] are used to update at-

tribute tracking scores for the current training instance. (9) The GA uses

tournament selection to pick two parent rules from [C] based on fitness

and generates two offspring rules which are added to [P]. The GA applies

two well known discovery operators: crossover and mutation. All rules in

[C] and [I] are returned to [P].
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Fig. 1: ExSTraCS Schematic: Ovals are mechanisms, bordered squares are sets of either data or rules, green = rule discovery mechanism, pink = traditional LCS

mechanism, and blue = mechanisms unique to ExSTraCS.

(10) Whenever the size of [P] is greater than the specified maximum, a

deletion mechanism removes rules or rule copies from the population.

For performance tracking and classification prediction, a prediction array

is generated for the [M] formed from each training or testing instance.

A class prediction is made by a fitness weighted vote of all rules within

[M]. The class with the largest ‘vote’ is the predicted class. (C) After all

learning iterations have completed, rule compaction is applied as a post-

processing step to remove poor and/or redundant rules from [P] to yield

[Pc].

ExSTraCS will yield up to five distinct output files after the final iteration,

or any iteration at which a full evaluation is requested. These include (1)

the population of rules collectively comprising the prediction ‘model’, (2)

population statistics, summarizing major performance statistics includ-

ing global training and testing accuracy of the rule population, (3) co-

occurrence scores for the top specified pairs of attributes in the dataset,

(4) attribute tracking scores for each instance in the dataset, and (5)

predictions on testing data with respective class votes. This last output

allows an evolved ExSTraCS rule population to be applied as a prediction

machine. These outputs may be evaluated and visualized to facilitate

knowledge discovery as described in [7].
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Getting the Software

ExSTraCS 1.0 is available as open-source (GPL) code. It is a cross-

platform program written entirely in Python 2.7. It is freely available for

download from sourceforge.net/projects/exstracs. While this article fo-

cuses on ExSTraCS 1.0, we anticipate that ExSTraCS 2.0 will already be

available at this same link. ExSTraCS 2.0 improves the scalability of ExS-

TraCS, reliably performing complex learning on datasets with upwards of

2000 attributes. Included with both versions of ExSTraCS is an exhaus-

tive users guide that details command line operation, run parameters,

and code modules. See [4] and [5] for research articles introducing ExS-

TraCS 1.0 and 2.0, respectively.

Minimum System Requirements

Python 2.7 (www.python.org).

1 GHz processor

256 MB Ram

Example Problem

To demonstrate how ExSTraCS is set up, run, and its output analyzed, we

will consider the multiplexer problem as an example. N-bit multiplexer

problems are scalable supervised learning toy problems with Boolean at-

tribute states, and a Boolean class. These problems involve attribute

interactions as well as overlapping patterns of heterogeneity. Typically

these problems do not include any noise, nor do they include any non-

predictive attributes. N-bit multiplexer problems have been regularly ap-

plied to test and compare many different LCS algorithms, as well as other

machine learning algorithms, particularly in the context of algorithm scal-

ability.

For simplicity, we examine the 6-bit multiplexer problem illustrated in Fig-

ure 2. In any multiplexer problem, the initial address bits point to some

register bit, and the value at this register bit will give the class of the in-

stance. Essentially in the 6-bit multiplexer, 3 attributes states determine

the class of a given instance. The dataset we use in this example to train

ExSTraCS includes all 64 unique 6-bit strings as instances along with the

correct corresponding class labels.

This problem can be completely and accurately captured by only 8 rules

each specifying only three attributes. For instance a rule with condition

(0,1,#,1,#,#) and class 1 would be optimal for making an accurate predic-

tion on the instance given in Figure 2. The ‘#’ symbol corresponds to a

wild card or ‘don’t care’, which indicates that the instance can have any

value for that particular attribute (i.e. the rule is generalizing over those

attributes). Another example of an optimal rule would be (1,1,#,#,#,0)

with class 0. Here, the address bits ‘1,1’ correspond to the fourth register

bit which specifies a value of 0 for class.

A0 A1 R0 R1 R2 R3 Class 

0 1 0 1 1 0 1 

Fig. 2: Example 6-bit multiplexer training instance. The first two bits highlighted

in orange are considered to be address bits and the remaining 4 bits are

considered to be register bits. The class for this instance is highlighted

in grey. Notice that in the multiplexer problem, the class is always equiv-

alent to the Boolean value at the register bit specified by the address

bits.

Running ExSTraCS

Preparing to run ExSTraCS from the command line requires only three

things. First, make sure that Python 2.7 is installed on your computer.

Second, make sure that you have a properly formatted training dataset

file. Third, make sure that you have a properly formatted configuration

file that specifies, at minimum, the set of 4 run parameters that have not

been assigned a default value within ExSTraCS. Note, that in ExSTraCS

2.0 we have further simplified operation of the algorithm by requiring at

minimum, only the path/name of the training dataset.
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Data Format

Any training or testing dataset files should be formatted as a tab-

delimited ‘.txt’ file, where the first row includes column headers (i.e.

identifiers for attributes, and the class variable). The header label for

the class column is ‘Class’ by default, but this can be changed as a run

parameter to match an existing class column label. Additionally, the class

column can be located anywhere, as ExSTraCS identifies this column by

the class label. Missing values in the dataset should have a standard,

unique designation (we suggest ‘NA’ by default). The size of the data

that ExSTraCS can handle, (i.e. the number of attributes and the number

of instances) may be limited by the user’s hardware specifications, when

datasets get extremely large.

Configuration File

The configuration file in ExSTraCS can be used to specify all run pa-

rameters available in the software, including the path/name of the data

files, traditional LCS learning parameters, and on/off switches for the

many new features that have been incorporated into the ExSTraCS frame-

work. While most run parameters in ExSTraCS include a default value,

a handful of parameters must be specified within the configuration file.

These include (1) trainFile, the path/filename for the training dataset,

(2) testFile, the path/filename for the testing dataset (None can be

specified if no testing data is available or desired to be included in the

analysis), (3) outFileName, the path/base-filename for the five stan-

dard output files, and (4) outEKFileName, the path/base-filename for

the EK file output by ExSTraCS during pre-processing. Names can be

given without paths if respective files are in or will be placed in the

working directory. Included with ExSTraCS is an example configuration

file named ExSTraCS_Configuration_File_Minimum.txt. To get

ExSTraCS running on the small simulated genetics training and testing

datasets included with the software, leave this configuration file as is. To

run ExSTraCS on the included datasets navigate from the command line

to the folder where ExSTraCS_Main.py has been saved and type the

following:

python ./ExSTraCS_Main.py

ExSTraCS_Configuration_File_Minimum.txt

This is the command for running ExSTraCS. Notice that the only argu-

ment required by ExSTraCS is the file path/name for a properly formatted

configuration file.

Also included with ExSTraCS are two additional example configuration

files. The first, ExSTraCS_Configuration_File_Complete.txt in-

cludes all available ExSTraCS run paramters and their default values.

Some may find it convenient to use/edit this configuration file format

so that they have greater control over algorithm parameters, and/or

to have a record of parameters used in an analysis via a copy of a

complete configuration file. Alternatively, the second example named

ExSTraCS_Configuration_File_Recommended.txt includes both

the minimum required run parameters, and parameters that (1) may dra-

matically impact performance given different dataset characteristics (2)

are convenient for data formatting, or (3) give users access to key op-

tional features. We expect that most users would find it convenient to

use/edit this configuration file format.

Running the 6-bit Multiplexer Analysis

In order to run ExSTraCS on our example 6-bit multiplexer we will edit

the ExSTraCS_Configuration_File_Complete.txt file. As we will

largely rely on default values, we will only make a few key updates to this

file (itemized below). See the ExSTraCS users guide (included with the

software) for a detailed review of all run parameters, their function, and

expected impact on algorithm performance.

trainFile is assigned the name of the 6-bit multiplexer training

data file 6Multiplexer_Data_Complete.txt, saved in the work-

ing directory.

testFile is assigned None.

outFileName is arbitrarily assigned ExampleRun.

outEKFileName is assigned ExampleRun.

learningIterations is assigned 5000.10000.

N, which specifies the maximum rule population size, is assigned

500.

p_spec, which impacts the proportion of specified attributes in

newly covered rules, is kept at the default of 0.5.

nu, which dictates the importance of high accuracy in the calculation

of rule fitness, is assigned 10.
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The last four parameters in this list are really the only run parameters

that a typical user might have to adjust when running ExSTraCS. We will

discuss them in a bit more detail in a moment. First, in order to run

this 6-bit multiplexer analysis simply type the ExSTraCS run command as

before, this time specifying the edited configuration file.

python ./ExSTraCS_Main.py

ExSTraCS_Configuration_File_Complete.txt

Key Run Parameters

As alluded, there are only a handful of run parameters that have the

potential to dramatically alter ExSTraCS performance, depending on the

size and complexity of the dataset/problem. While users can certainly

rely on default parameters to get started, we quickly review the impact

of setting these key parameters below.

learningIterations: This parameter is used to specify two things.

(1) The maximum number of learning iterations and (2) when to evalu-

ate ExSTraCS at specified ‘checkpoints’. The user can specify any num-

ber of learning checkpoints, however the iteration numbers should be

increasing up to some maximum number of iterations, and individual

values should be separated by a period. For larger datasets, or more

complex problems, the user may wish to increase the number of learning

iterations. Alternatively, if the user wants the algorithm to run for less

time the number of learning iterations should be decreased. Note that

for this 6-bit multiplexer problem we are running ExSTraCS for a total of

10,000 iterations, but pausing after only 5000 iterations for a complete

evaluation of the rule population.

N: This parameter specifies the maximum population size that ExSTraCS

is allowed to reach before the deletion mechanism turns on and main-

tains this maximum number. The value of N can have a dramatic influ-

ence on ExSTraCS performance. If N is too small, ExSTraCS can’t properly

explore a given search space, or maintain ‘good’ rules. If N is too large,

ExSTraCS will take longer to run, and the resulting rule population will

likely be much bigger than necessary, and potentially harder to interpret.

p_spec: This parameter indicates the probability that a given attribute

will be specified (vs. generalized) during covering. Generalizing an at-

tribute is equivalent to adding ’#’ in traditional LCS rule representations.

Setting this value appropriately can play a critical role in successful LCS

learning. By default, ExSTraCS uses a default value of 0.5. In datasets

with a small number of attributes (i.e. <= 20) it is fine to leave this prob-

ability set to the ‘high’ default value of 0.5. Roughly speaking, as the

number of attributes in the dataset increases, the value of p_spec should

decrease. If p_spec is set too high for a given dataset, wildly over spe-

cific rules will be generated in covering, that have little to no chance of

generalizing to other instances. On the other hand if p_spec is set too

low covering may not initially ‘cover’ much of the search space, leading

to lower initial rule diversity and a reduced chance that the best solution

will be found. Ideally we would want to set p_spec to be equal to or just

larger than the optimal average rule specificity required for the problem

domain at hand. In most real-world problems this knowledge would not

be available. New features in ExSTraCS 2.0 eliminates the need for this

parameter all together, and greatly improves algorithm scalability.

nu: This parameter specifies the power to which accuracy is raised in

calculating rule fitness. By default, ExSTraCS employs a default value of

1 which we have found to be most effective on noisy problems/data. Tra-

ditionally, LCS algorithms have employed a value of 10, which is particu-

larly effective in ‘clean’ problems with little to no noise (i.e. it is possible

to achieve a testing accuracy of 100%, or close to this value). In this 6-bit

multiplexer problem we have set this parameter to 10, as is applied in

most LCS algorithms.

ExSTraCS Output

ExSTraCS outputs a handful of files upon completion. These outputs can

be analyzed to evaluate performance and provide a window inside the

rule population and the patterns of association captured within. Using

the 6-bit multiplexer example we will explore the ExSTraCS output and

see how a solution distributed over a rule population can be interpretable.

We examine each output file separately below.

Population Statistics

Many users may simply be interested in the training and/or testing accu-

racy of the evolved rule population. This is the classification or prediction

accuracy of the solution.

SIGEVOlution Volume 7, Issue 2-3 8
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The population statistics file (extension ‘[Iteration]_PopStats.txt’) sum-

marizes global performance of ExSTraCS, and provides global statistics

to help characterize which attributes were found to be most important to

making accurate predictions. Most importantly this file provides training

accuracy, testing accuracy, global run time, coverage (i.e. the propor-

tion of instance in the dataset upon which a prediction could be made)

and the number of unique rules in the final population (i.e. macro pop-

ulation size). After 10,000 learning iterations ExSTraCS yields a training

accuracy of 1.0, a run time of 0.07 minutes, a coverage of 1.0, and a

macro population size of 95. In other words, ExSTraCS has learned to

predict all training instance classes with 100% accuracy. Inspecting the

file for only 5,000 iterations demonstrates that ExSTraCS had obtained

100% accuracy within 0.04 minutes on this fairly simple toy problem.

Next, this file includes three summary statistics introduced in [7] that can

be used for knowledge discovery to identify attributes that were of partic-

ular importance in making class predictions. These statistics include the

specificity sum, the accuracy sum, and the attribute tracking global sum.

For each statistic a sum is calculated for every attribute in the training

data. Attributes that consistently have the highest sums for these three

metrics are likely to be most important for making accurate predictions.

For our 6-bit multiplexer example we observe that the two address bit

attributes consistently yield the highest scores for all three metrics. This

is clearly in-line with the multiplexer solution, that requires optimal rules

within which the address bits are always specified, along with one other

register bit. In problems where only a subset of attributes are predictive,

these metrics can be applied as feature selection to identify attributes

that the algorithm identified as important vs. attributes that could be

ignored.

Statistical significance values (i.e. p-values) can be assigned to most

statistics in this file through the use of permutation testing as described

in [7].

Rule Population

For users interested in knowledge discovery, or using the evolved

rule population as a prediction engine, this output file (extension

[Iteration]_RulePop.txt) includes all information about individual rules

evolved in the population. Essentially this file outputs the resulting so-

lution or ‘model’, that is distributed over a population of simple IF:THEN

rules.

Any rule can be translated into a human readable expression such as ‘If

A0 is 0 and A1 is 1 and R1 is 1, THEN Class = 1’, which would be a rule

describing the 6-bit multiplexer pattern seen in Figure 2. The rule pop-

ulation can be explored through manual rule inspection. For every rule

in this file, a number of rule parameters are stored for each including

the rule condition, which ExSTraCS breaks up into ‘Specified’ and ‘Con-

dition’, or the attribute column location and the attribute state specified,

respectively. This is part of ExSTraCS’s more efficient and flexible rule

representation [1]. Also, each rule stores a class prediction (referred to

as ‘Phenotype’), rule fitness, and rule numerosity. The most effective way

to identify the most important rules in the population as part of manual

interpretation, is to rank rules by decreasing numerosity. This can be ac-

complished quickly in software like Microsoft Excel. Rules with the largest

numerosity are typically most important. Doing this for our 6-bit multi-

plexer problem we quickly observe that all 8 optimal rules have been

identified within the 14 rules with the largest numerosities out of all 95

rules in the population. These optimal rules include:

(1,1,#,#,#,0)→ 0

(0,1,#,0,#,#)→ 0

(1,0,#,#,1,#)→ 1

(1,0,#,#,0,#)→ 0

(1,1,#,#,#,1)→ 1

(0,1,#,1,#,#)→ 1

(0,0,0,#,#,#)→ 0

(0,0,1,#,#,#)→ 1

The rule population can also be visualized as a heatmap as described in

[7], clustering rules vs. attributes, to reveal attribute interactions, and

potentially heterogeneous relationships captured by rules in [P]. This can

be particularly useful in noisy problems, or in problems where only some

attributes are predictive.

Co-occurrence

Similar to the attribute sum scores provided by the population statistics

file, attribute co-occurence sums are given in the Co-occurrence file (ex-

tension ‘[Iteration]_CO.txt’).
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This file ranks top pairs of attributes that are co-specified in rules across

[P]. Permutation testing can be also be applied as described in [7] to

assign p-values to these sums. For our 6-bit multiplexer example, the

top co-occuring attribute pair is A0 and A1, which captures the most im-

portant interacting attribute pair (i.e. the address bits that should be

co-specified within optimal rules).

Attribute Tracking Scores

Another output that can be applied to knowledge discovery is the at-

tribute tracking score file (extension ‘[Iteration]_AttTrack.txt’). As de-

scribed in [6], hierarchical clustering can be performed on instances, and

attributes within this file to identify groups of instances with similar pat-

terns of attributes with high attribute tracking scores in order to identify

potentially heterogeneous instance subgroups and better characterize

relationships between attributes predictive of class. Similar to the rule

population visualization, these scores can be visualized as a heatmap,

wherein instances vs. attributes are illustrated, each arranged via hierar-

chical clustering.

Learning Tracking

Different from the previously described output files, the learning tracking

file (extension ‘LearnTrack.txt’) is only output once per run of ExSTraCS

on a given dataset. This file includes all of the estimated learning per-

formance updates, output throughout ExSTraCS learning. This file can

be used to graph learning progress over time. Examining this file for

our 6-bit multiplexer problem, we observe that 100% training accuracy is

achieved after about 2350 learning iterations.

Conclusions

ExSTraCS has adapted and expanded the Michigan-style LCS algorithm

to the needs of investigators dealing with real-world supervised learning

problems. This software seeks to take the flexible and powerful LCS al-

gorithm framework and make it user-friendly, and transparent such that

classification and data mining on complex domains can be performed

with confidence and understanding.

In this article we have used a somewhat simple problem to illustrate how

the training, evaluation, and interpretation of an LCS algorithm has been

made more approachable in the context of the ExSTraCS software. How-

ever, this example only begins to scratch the surface in terms of what

ExSTraCS is capable of, and how it’s output may be utilized as a compet-

itive prediction machine, and a rich resource for knowledge discovery.

ExSTraCS is under active development and improvement, to further en-

hance performance, interpretability, and flexibility to different types of

data and analysis. ExSTraCS 2.0 adds a rule specification limit that dra-

matically improves ExSTraCS scalability and eliminates one of the major

LCS run parameters. Over the next year we also plan to (1) add the ability

for ExSTraCS to learn on data with continuous endpoints, referred to as

quantitative trait analysis, (2) further improve overall learning speed and

performance, and (4) provide a graphical user interface (GUI) for ExS-

TraCS to facilitate use and incorporate live learning visualizations. We

encourage user feedback, application to new problem domains, collabo-

rative or independent development of ExSTraCS, and competitive com-

parison of this new LCS framework to other cutting edge machine learn-

ing strategies.
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Racing Line Optimization @ Race
Optimal

Ricky Vesel — Race Optimal (http://www.raceoptimal.com/) — rickyv@raceoptimal.com

R
ace Optimal (www.raceoptimal.com) is a project aimed at cre-

ating an effective and fully automated process for racing line

optimization in order to produce a database of racing lines

for circuits around the world. The ideal racing line is defined

as the trajectory around a track that allows a given vehicle to traverse

the circuit in the minimum time. In practice, it is an abstraction that

varies with track, environmental conditions, vehicle type and condition,

competitive traffic, and other factors. A certain extent of the talent pos-

sessed by the elite driver is the ability to perceive this optimal path and

its variations, as well as to navigate it as quickly as possible. Until now,

automated methods have struggled to match the performance of human-

generated or human-guided racing lines [1]. This article describes the

optimization engine and representation scheme used at Race Optimal to

compute realistic and high performing racing lines for a wide variety of

vehicle types.

Despite their abstract existence in the world of sport, there is significant

use for concretely defined racing lines. Racing video games are quite

popular, and require high quality racing lines in order to provide challeng-

ing AI competitors [1]. Racing lines have also a role in drivers’ education,

where they are used to develop visualization skills, as well as to provide a

comparison of a driver’s current approach with a potentially superior one.

GPS data overlays onto track maps are currently used as driver aids and

a logical extension of this approach is to display the generated optimal

racing lines for comparison as well. An optimization process that encom-

passes vehicle characteristics can further be used for race preparation

for example to choose a downforce configuration or transmission setup,

as well as to quickly familiarize a driver with a new circuit.

When tackling the problem of racing line optimization, different simplify-

ing assumptions have been applied. A 2D kinematic approach dictates

that a vehicle’s speed is governed by

vmax =

√
rµ(mg+FDF)

m
(1)

where r is radius of curvature, µ is tire friction coefficient, m is vehi-

cle mass, and FDF is aerodynamic downforce. Maximizing the radius of

curvature everywhere on the path will then maximize allowable vehicle

speed everywhere. However, a shorter path, though having a smaller

radius of curvature, may still take less time to traverse due to the shorter

distance. Thus, one assumption applied in racing line optimization is that

the optimal path will be a combination of the maximum curvature path

(MCP) and the shortest distance path (SP). Producing the optimal linear

combination of these paths is the accomplished by Braghin et al. [2]. This

approach can be extended by dividing the track into subsections where

the optimal tradeoffs between MCP and SP are optimized independently

[3]. However, not all the approaches assume that the optimal racing line

is a combination of the MCP and SP; in fact, other authors explored alter-

native methods of generating the racing line geometry, for example Euler

spirals [4] or Bézier curves [5]. A simple point-by-point representation of

the racing line may be also applied [3].
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Once a racing line representation scheme is established, a fitness func-

tion is required to evaluate the candidate solutions. Fitness may simply

be the measurement of path length or total curvature, but in order to

capture the variation of the ideal racing line for different vehicles, some

considerations about vehicle dynamics and power level are necessary. In

[3], a robot driver is used in a high quality simulation to evaluate can-

didate racing lines. The present work also uses a computer simulation,

but one that takes into account a much more limited model of vehicle

dynamics in order to run as quickly as possible while still capturing the

essence of several vehicle types.

A framework for racing line optimization should

1. Allow a high degree of geometric flexibility in racing line represen-

tation

2. Produce a racing line that appears realistic and smooth, without

kinks or unnecessary undulations

3. Produce visually appealing and convincingly accurate racing lines

for several vehicle types

4. Make full utilization of the available track surface, meeting all apexes

and borders where necessary

5. Require minimal setup procedure allowing for the analysis of a large

number of tracks and vehicles, with a fully automated solution pro-

cess

By applying unique methods of geometric representation, optimization,

and physics simulation, we believe these goals have been achieved. The

methodology is described in the following sections.

Racing Line Representation

One of the biggest challenges was creating a racing line representation

scheme that satisfies the above criteria, particularly (1), (2), and (4).

Experimentation with different approaches revealed that all of the ap-

proaches mentioned above fail to meet criteria (1) alone. To elaborate, a

high degree of flexibility means that the racing line should be able to take

on any conceivable shape that is physically realistic for a vehicle travers-

ing a racetrack. Use of a predefined geometric shape, such as an Euler

spiral, while interesting, is obviously too restrictive to satisfy this aim.

Fig. 1: Example of a Bézier curve, with control points (black) and the resulting

curve (red) [5].

Fig. 2: Sample control point locations. The blue lines represent the possible lo-

cations of the attached control points (red). Adapted from [5].
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This requirement should also obviously disallow a simple point-by-point

construction of the racing line, with every point free to move indepen-

dently; the unpredictable jumps from point to point would result in un-

physical vehicle behavior and/or difficulty calculating the actual trajec-

tory. It quickly becomes clear that a control point approach combined

with some sort of smoothing function is necessary.

The authors in [5] utilize a Bézier curve (Figure 1), and this approach

comes closest to satisfying our requirements. The control points, how-

ever, are restricted to the line segment perpendicular to the track on

which they are placed, having a length of 120% of the track width, as

shown in Figure 2. However, because Bézier curves typically do not in-

tersect their control points, depending on the point density, there is no

guarantee that this scheme will allow the racing line to reach the edges

of the track, failing Criteria 5. Furthermore, limiting the control point po-

sitions to a line segment could result in an unacceptable likelihood that

the fastest geometry might only be inadequately approximated by the

limited set of potential Bézier curves available in this scheme, failing Cri-

teria 1. Thus, in the current work, the control points are allowed to move

more freely, within a circle of radius equal to four times the average track

width, originating at initial user defined locations. An example is shown

in Figure 3.

As part of fulfilling Criteria 3 to produce visually appealing racing lines,

the line must smoothly connect to itself. This is important not only for

the aesthetic quality, but because if that requirement is not enforced,

the line could begin a circuit on a different path than with which it con-

cludes, which is illogical in the context of lapping a racetrack. Initially

the working solution was to forge a connection between the starting and

ending points with an intermediate Bézier curve, which resulted in sig-

nificant added complexity. Eventually, a more satisfactory solution was

arrived upon, which utilizes a periodic smoothing spline [6].

Fig. 3: Sample control point distribution (blue) and the circles representing their

possible locations (black). Each control point is located at the center of

its circle.

Fig. 4: Control points (blue) and the resulting periodic smoothing spline (red)

using a smoothing factor of 0.25.
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Periodic smoothing splines allow for a parameterized degree of smooth-

ing, and automatically create a nicely connected curve which satisfies

the following “periodic” end conditions over the interval [x1,xn] [6]:

f (x1) = f (xn)

f ′(x1) = f ′(xn)

f ′′(x1) = f ′′(xn)

To obtain the racing line resulting from a set of control points, a parame-

ter is introduced such that the x and y coordinate data are treated sepa-

rately as a function of that parameter.

For example, control points Pk = (xk,yk), k ∈ {1, . . . ,n}, are separated into

P(x,k) = (tk,xk) and P(y,k) = (tk,yk), with tk ∈ {1,2, . . . ,n}. The coefficients

of the periodic smoothing spline are then found for the x and y data

separately, after which they are plotted together against t to form the

smoothly connected racing line. The present work uses smoothing pa-

rameter p = 0.25. An example of the resulting (not optimized) racing line

is shown in Figure 4.

Geometric Constraints

Because we use a control point scheme that allows for a highly variable

racing line shape, some method must be employed to restrict the result-

ing line to the confines of the track. The first step in this process is to

detect if the racing line intersects the start/finish line within the first 10%

of its segments. Any line that fails this test is rejected automatically as

invalid, thus ensuring that every candidate at least begins in an allow-

able position. The remaining task is to detect which points fall outside

the bounds of the circuit, and apply an appropriate penalty. This was

initially accomplished by counting the intersections between the borders

and the racing line. Since it is known that the candidate begins inside the

track, after one intersection it will be out of bounds, and will remain so

until another intersection, and so on. Even after porting this functionality

to C code, this process was unacceptably slow. A racing line typically has

about 1000 points per mile, and track borders roughly the same point

density. Evaluation often required tens of millions of intersection tests

per solution.

Fig. 5: Example of the horizontal slice method. Typically 10,000 or more hor-

izontal lines are drawn at equal intervals (black) and the intersections

with the borders are calculated (blue). The resulting valid x-intervals are

shown in red. Three lines are shown here for demonstration.

A new method was devised to eliminate this bottleneck in the evalua-

tion process, allowing for out-of-bounds points to be found very quickly,

after a small initial cost at setup. In this method, several thousand hor-

izontal lines are superimposed over the track borders, and the points of

intersection with the borders are determined (Figure 5). A lookup table is

produced that contains, for each line, the x-coordinates that contain the

in-bounds sections of track. For a given point on the racing line, the table

row with the closest y-coordinate can be quickly ascertained. That row

can then be scanned to determine if the racing line point’s x-coordinate

is valid in any of the x-intervals for that row. Table 1 contains a sample of

the lookup table corresponding to Figure 5.

Fitness Evaluation

Since this project requires the production of optimal racing lines for sev-

eral vehicle types, vehicle simulation must obviously come into play to

capture these differences. And because a flexible geometric scheme is

utilized, there is no compelling reason to restrict oneself to SP or MCP

solutions. This frees the process from as many assumptions about the

optimal geometry as possible.
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Tab. 1: Sample of in-bounds lookup table corresponding to the slices drawn in

Figure 5.

y-coordinate xle f t,1 xright,1 xle f t,2 xright,2

462.4 1802.6 1959.3 2477.1 2516.1

825.0 2170.7 2207.7 2465.3 2499.9

1187.6 2077.2 2111.1 2335.4 2370.9

Thus, vehicle simulation lap time is the core of the fitness function. The

simulation process is outlined as follows:

1. Test for intersection with the start-finish line

2. Calculate the radius of curvature at every point, using

r =

∣∣∣∣∣ (x′2 + y′2)3/2

x′y′′− y′x′′

∣∣∣∣∣
3. Calculate the maximum allowable velocity at every point, limiting to

vehicle top speed

4. Beginning at the slowest point, iterate forward, limiting acceleration

to that allowed by excess grip, vehicle power level, and aerodynamic

drag

5. Iterate backward, limiting deceleration to that allowed by excess

grip and aerodynamic drag

6. Enforce smooth input transitions

7. Calculate lap time

8. Count the out-of-bounds points and apply the appropriate penalty

Several items require further explication, beginning with (3). Maximum

velocity is determined from the kinematic equation for centripetal force:

Fc =
mv2

r
(2)

This force is equal to the level of cornering force available,

Fc = µ(mg+FDF) (3)

where FDF is the aerodynamic downforce. From the well-known equation

for aerodynamic lift, downforce can be modeled by FDF = 1/2ρv2SCL. For

a ground vehicle, however, the terms other than velocity can be grouped

in a single parameter, kDF , where FDF = kDF v2. By setting Equation 2

equal to Equation 3 and plugging in this result, we can solve for velocity:

v =
√

rµmg
m− rµkDF

Since the term in the denominator approaches zero as rmax approaches

m/(µkDF), this implies that for r≥ rmax, a vehicle with downforce can travel

at an unlimited speed. Thus, when r is above rmax, the maximum velocity

is taken to be the vehicle top speed.

Steps (4) and (5) translate the maximum allowable speed based on ra-

dius into realistic vehicle speed based on simplified vehicle dynamics. To

limit the acceleration in the forward direction, the point at which speed is

minimum is selected. The algorithm then looks to the velocity at the next

point and computes the desired acceleration. The actual acceleration

(and throttle input) is then restricted to that allowed by tire grip, engine

power, and aerodynamic drag. After processing the entire path this way,

the process is repeated in reverse, treating braking zones as accelera-

tion zones in the backward direction. For braking, however, aerodynamic

drag provides a contribution rather than a cost. Figure 7 demonstrates

the output of steps 3-5 for the Mid-Ohio Sports Car Course, one of the

circuits featured at RaceOptimal.com.

Initially this was the extent of the vehicle simulation. However, some

Race Optimal users pointed out the unrealistically fast input transitions,

as well as rapid input corrections mid-corner that would likely lead to in-

stability. Since the vehicle simulations are published on Race Optimal in

video form, these shortcomings needed to be addressed. A smoothing

process was developed that limits the rate of input transition depending

on the cornering load, where maximum cornering load requires the slow-

est rate of throttle or brake transition. The details of the smoothing algo-

rithm are beyond the scope of this article, but an example of the results

are shown in Figure 7 and Figure 8. Including this limit in the optimization

also improved the shape of the final racing line, since the simulation no

longer had the luxury of traversing a line in a way that requires instanta-

neous input corrections.
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Fig. 6: Progression of simulated vehicle velocity, starting with the maximum al-

lowable and showing corrections for acceleration and braking zones. Sim-

ulation is for a Mazda Miata at the Mid-Ohio Sports Car Course.

Fig. 7: Throttle and brake for Mazda Miata at Mid-Ohio Sports Car Course without

smoothing correction.

Fig. 8: Throttle and brake for Mazda Miata at Mid-Ohio Sports Car Course with

smoothing correction.

Genetic Algorithm

We experimented with several approaches, including particle-swarm op-

timization and genetic algorithms with various parameters. The cur-

rent approach is a standard genetic algorithm with a supplemental sub-

processes called “healing” used to improve performance. The optimiza-

tion uses binary encoding and a population size of 75 members, oper-

ating on a set of control point locations. The control point positions are

calculated by an offset from their origin defined in radial coordinates, with

14 bits each encoding r and Θ. Selection from the parent population for

breeding is made using the roulette wheel approach, where the likelihood

of selection is proportional to candidate fitness. Bit crossover probability

between mating genomes is 75%, and mutation probability varies with

generation, but is at most 0.2%. Each generation, a child solution set is

created equal in size to the parent generation. A simple replace-worst

strategy is utilized, where the worst 90% of parent solutions are replaced

by the best 90% of child solutions.
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The maximum number of generations is set to 15000, but the optimiza-

tion can end as early as 10000 if no substantial lap time improvement is

being obtained. In order to combat premature convergence, after 2000

generations the population is re-randomized using the current best solu-

tion as the seed.

This approach provides generally good results, but not good enough to

satisfy Criteria 3, which requires visually appealing and convincingly ac-

curate racing lines. The optimization would frequently miss apexes by

a small to medium distance, and would do this consistently at certain

turns on some tracks, despite the fact that clipping the apex resulted in

a quicker lap. Although the difference in lap time was rarely more than

one or two tenths of a second, such errors are noticeable in the resulting

racing lines, and undermine the credibility of the results. It was even-

tually determined that this problem was caused by the solutions becom-

ing overly sensitive to out-of-bounds points at the entrances and exits of

some turns. The racing line converged on the border at the entrance or

exit before the apex, and by that time moving closer to the apex pushed

the other sectors out of bounds. Since out-of-bounds points are penalized

stiffly in order to prevent them from appearing in the final solution, the

result was that the optimization was unable to meet the racing line with

the apex of some turns.

In order to address this shortcoming, a “healing” sub-process was devel-

oped that is applied to a certain percentage of offspring solutions. To heal

a racing line, control points closest to concentrations of out-of-bounds

points are incrementally shifted toward the in-bounds direction in an at-

tempt to bring the out-of-bound points back onto the track. This process

involves recalculating the racing line many times for a given solution, and

therefore increases the computational burden substantially. It was found

that limiting the likelihood of healing was beneficial both to processing

time and final solution quality, as healing every solution tended to inter-

fere too much with the genetic algorithm itself. Although the optimization

still occasionally produces a missed apex, the frequency of this occurring

is greatly reduced with the incorporation of the healing sub-process.

Results

As an example, we applied our optimization scheme to the Mid-Ohio

Sports Car Course. In particular, in addition to the normal simulation-

based optimization, we also performed optimizations seeking the SP and

MCP solutions—the latter maximizing the sum of curvature as the fitness

function. Figure 9 shows the MCP and SP solutions compared with the

simulation-based optimization in a section of track called the Keyhole.

The black-filled area represents the possible linear combinations of the

MCP and SP solutions. Figure 10 shows the same results, but for the sec-

tion of track made up of Turns 6-10, a series of connected esses. It can

be seen that over most of this section the MCP and SP solutions are very

similar. The simulation-based racing line enters Turn 6 within the MCP-SP

area, but thereafter follows a path that deviates substantially from what

would be allowed by any linear combination of the two.

Lap times for the three optimizations are shown in Table 2. The

simulation-based result achieved a lap time of 1’43.42. The National Auto

Sport Association (NASA) currently lists the track record (eligible laps oc-

cur during a timed points race) for Spec Miata vehicles at Mid-Ohio as

1’45.6551. This is over two seconds slower than the optimal lap time

achieved in the simulation; investigations are underway to determine if

this discrepancy is a result of optimistic vehicle parameters or possibly

other inaccuracies in the simulation. Nevertheless, the simulation-based

result beat the MCP solution by over 4 seconds, and the SP line by over 5

seconds. However, no optimization of the tradeoff between MCP and SP

paths was performed. The time elapsed through Turns 6-10 can be mea-

sured for a better comparison, since there is little variation between the

MCP and SP lines, and the MCP line alone is a plausible route through that

sequence. The sector times are shown in Table 2, where the simulation-

based solution is 0.67 seconds quicker than the MCP.

Bearing in mind the fourth criteria, to capture the differences in rac-

ing line for different vehicles, the same section from Mid-Ohio is shown

in Figure 11, via a screen capture from raceoptimal.com. The four ve-

hicle types are the Mazda Miata, Porsche 911 GT3 RS 4.0, a generic

motorcycle-type vehicle, and a theoretical F1 car.

1 http://www.nasamidwest.com
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The optimization clearly produces different paths for the four vehicles.

The entire track must also be considered in order to assess the accom-

plishment of the criteria listed in the introduction, and this is shown in Fig-

ure 12 for the Mazda Miata. The result is a fluid racing line that touches

the borders in the expected places, and takes a line very similar to what

one can observe in professional onboard footage. Thus, the initial five cri-

teria for an automated process of realistic racing line optimization have

been satisfied.

Conclusions

A racing line optimization procedure has been developed that produces

plausible real-world results that are visually pleasing and can capture

the behavior of different vehicle types. The procedure does not rely on

assumptions about the geometry of the ideal racing line. It is hoped that

future authors will free themselves from the restrictions of predetermined

geometry or racing line characterization when undertaking the challenge

of racing line optimization.

As of writing, 62 circuits with 145 individual configurations have been

analyzed on RaceOptimal.com, with unique racing lines and video simu-

lations for each of the four vehicles. Thus, the usefulness of the present

method as a means of developing a racing line database has been estab-

lished.

Future Work

The current track geometry is modeled in two dimensions, meaning that

elevation changes and track camber are not considered, accordingly, fu-

ture work will include 3D considerations. Also, a more sophisticated vehi-

cle model can be used in order to more accurately capture the interaction

between the racing line and vehicle dynamics, as well as to include vari-

able vehicle parameters, such as gearing, downforce configuration, and

tire hardness in the optimization process.

Fig. 9: The Keyhole section of Mid-Ohio Sports Car Course, showing the MCP, SP,

and simulation based optimization results. The black region represents

the track accessible by a linear combination of the MCP and SP solutions.

The red line is the optimized path for a Mazda Miata. The racing line is

the vehicle centerline, so a gap exists between the racing line and the

track borders even at the nearest point.

Fig. 10: Series of esses beginning with Madness from the Mid-Ohio Sports Car

Course, showing the MCP, SP, and simulation based results. Clearly, the

simulation based path requires track areas well outside the bounds of

the MCP and SP solutions.
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Tab. 2: Lap and sector times for the three optimizations.

Sector MCP Time SP Time Simulation-Based Time

Full Track 1’47.67 1’48.86 1’43.42

“Madness” Section 19.21 19.57 18.54

Fig. 11: Sample of the final racing line map for Turns 6-9 at Mid-Ohio Sports Car

Course —- Club Circuit. The individual lines can be toggled on and off.

Fig. 12: Sample of the final racing line map for the Mazda Miata at Mid-Ohio.
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K-Expressions Visualisation

Alwyn V. Husselmann — Institute of Natural & Mathematical Sciences, Massey University, Auckland — A.V.Husselmann@massey.ac.nz

V
isualisation is important for gaining a qualitative under-

standing of how algorithms operate [1, 2]. Visualization tech-

niques have been used to shed light on 3D voxel sets [3],

vector fields [4], as well as spatial data structures [5], lattice

gases [6], and several evolutionary algorithms.

In this brief article, we present a very fast and simple algorithm for visu-

alising large population of lengthy program trees represented as a set of

Karva expressions. The algorithm assumes that the population of candi-

dates is a collection of Karva-expressions [16, 10] which can be individu-

ally expressed as the following genotype:

*-++babaadc

The symbols *, +, - and / are the typical mathematical operators tak-

ing two operands, and the symbols a, b, c and d are some arbitrary

constants. The sequence of symbols represents a genotype whose in-

terpretation (the phenotype) is shown in Fig. 1. The tree is constructed

by taking the first symbol to be the root, and its arguments are filled from

left to right, level by level, advancing through the expression one symbol

at a time. Symbols that are not included in the phenotype (c and d) are

known as “introns” [16], but are still considered in the genomes and by

the genetic operators.
Fig. 1: The abstract syntax tree representing the karva-expression

*-++babaadc. The representation contains no d or c, as these do

not make part of the phenotype.
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GraphViz Visualisation

The algorithm is a geometric version of the Firefly Algorithm [12] de-

signed for program space [2]. It is “geometric” in the sense of Moraglio’s

efforts towards geometrically unifying evolutionary algorithms in his PhD

thesis [13].

A GraphViz tool known as sfdp, which uses an algorithm based on the

work of Fruchterman and Reingold [14], was used to visualise a popula-

tion of candidates. In essence, a population of expressions up to a length

of 64 symbols were condensed into a tree, where chromosomes would

share a graph node if they have it in common at the same expression

symbol index. Nodes are then linked from root to leaf, which allows one

to easily see where a chromosome deviates from others, and also what

group of symbols is most likely to be seen near the top of the tree (where

the function symbols are). All root symbols are linked to one manually

placed root symbol, which is not present in any expression head. This

is simply to ensure that there is one tree, and not four, as would be the

case if there were four symbols possible in the head section of a set of

k-expressions.

Renderings of a population of 1024 candidates (each with chromosome

length 64) using the above method involved generated the images shown

in Figures 2, 3 and 4 and reproduced with kind permission from Springer

Science & Business Media; the images were originally published in [2].

Each of these images were rendered at different time intervals. The

colours represent a distance from the root of the tree to the individual

cells. Each cell contains a symbol of the expressions as indicated above.

Figure 2 shows a freshly initialised population of individuals, whereas Fig-

ure 3 shows (generation 500) a population with more agreement over

which symbols to use in which indices. Finally, Figure 4 shows genera-

tion 1000, where convergence has been achieved more or less. There is

much more agreement and less divergent strands.

Fig. 2: A 2-dimensional visualisation of the very first generation of candidates.

As can be seen in comparison to Figures 3 and 4, there is little agreement

over which symbol to use for which expression symbol index.
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Fig. 3: Visualisation of generation 500 (symbolic regression population).

Fig. 4: Visualisation of generation 1000 (symbolic regression population).
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2014 Women@GECCO Workshop
Carola Doerr and Gabriela Ochoa

The Women@GECCO workshop series started in 2013 with the aim of

generating and supporting academic, professional, and social opportuni-

ties for women in evolutionary computation. The second edition, led by

Una-May O’Reilly in collaboration with Anna Esparcia, Aniko Ekart, and

Gabriela Ochoa, was held this year in Vancouver. Anne Auger and Carola

Doerr ran an associated event: a work-life balance panel featuring the

contribution of both female and male colleagues, who shared their expe-

rience in dividing their time between working hours and time for personal

projects. Elena Popovici, the local chair, provided invaluable support and

organised the provision of child-care facilities at the conference.

The workshop took place on Sunday July 12, at 10:40 – 12:30. The pro-

gram featured an invited speaker, Prof. Jasmina Arivofic, who has been

a faculty member of the Department of Economics, Simon Fraser Uni-

versity, B.C. Canada, since 1993. Jasmina climbed the ranks from assis-

tant, to associate to full professor and serves as Director of Centre for

Research on Adaptive Behavior in Economics. She conducts research in

agent-based computational economics, with emphasis in understanding

human learning and adaptive behavior using evolutionary simulations

and genetic algorithms. Jasmina provided an engaging talk and spoke

both about her work and personal journey in a male dominated field. She

added to the workshop discussion sharing her experience with womens’

groups in her field. In particular, she affirmed the benefits of mentorship,

a topic that was discussed during the workshop. We have decided to run

a mentorship program where interested women in the field (on all levels

of an academic career) can subscribe. Carola and Emilia Tantar volun-

teered to organize this mentorship program. Interested members of the

community should get in touch with them, both if you are interested in

mentoring someone or if you want to be mentored by a more senior per-

son. Carola and Emilia will do their best to find a good match between

mentors and mentees.

During the rest of the workshop we also discussed challenges women

face at conferences and the work place such as difficult interactions, be-

ing outnumbered, networking, and integrating work and life. This discus-

sion was chaired by Una-May and Anne who shared some of their experi-

ences.

The panel on work-life matters was held in the evening of Sunday, July

12, after the workshop and tutorial sessions. We are very happy to

have had Jürgen Brancke, Emma Hart, Gabriela Ochoa, Una-May O’Reilly,

Elena Popovici, Marc Schoenauer, and Nur Zincir-Heywood as panelists.

The panelists shared different aspects of what makes a good work-life-

balance for them. Elena pointed out that the topic is often discussed with

a single focus on how to combine a successful academic career with hav-

ing kids, but that for her it is also important to find ways to combine your

job-related ambitions with your hobbies.
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The panelists agree that it is both advantageous but at the same time a

dangerous feature of our job that we can outsource many activities to our

personal time, e.g., reading papers while waiting for the doctor’s appoint-

ment. Several panelists report that reducing the working time to 80% or

less as well as outsourcing of housekeeping work has helped them free-

ing up some time for non-work related projects. Marc shares some data

on the “academic funnel”: while the number of females in undergraduate

courses is quite acceptable in many fields, the proportion of women dras-

tically decreases with every step of an academic career (PhD, PostDoc,

Professor level). The panel also discusses that there are huge differences

between the different countries. We had a very lively discussion with sev-

eral impulses from the audience so that we have decided to run a similar

panel next year.

We count as accomplishments this year the design of new T-Shirts (as

seen in the photo), the inclusion of our workshop description as part of

the GECCO proceedings, and integration with the conference registration,

the provision of childcare, the successful work-life panel, and the local in-

vited speaker (serving as an important role model). We need to continue

working to achieve a mentoring scheme, outreach activities (specially at

high school level), and organising gatherings outside the realms of the

GECCO conference.

An important outcome of the workshop was the distribution of work and

roles to coordinate our future activities. The design and distribution of

a survey to gather information related to women in evolutionary compu-

tation is in hands of Emma Hart, Amanda Whitlock, and Una-May; Leigh

Sheneman volunteered to work with Una-May in the design of T-shirts;

a mentoring scheme will be organised by Carola and Emilia; while Anna

and Gabriela will organise an invited speaker for our forthcoming event

in Madrid (GECCO 2015). We still need volunteers to work on fundrais-

ing and outreach activities, and to help in the organisation of the next

work-life panel. If you are interested in supporting the workshop, please

reach out to one of the organizers! In summary, we had an enjoyable,

well-attended, and up lifting event, in which we welcomed new mem-

bers, got to know each other better, and shared some of our experiences

and concerns both among us and with our appreciated male colleagues.
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2014 Symposium on Search-Based Software Engineering - Event Report
Nadia Alshahwan

The city of Fortaleza, Brazil hosted the sixth edition of the Symposium on

Search-Based Software Engineering (SBSE) between the 26th and 29th of

August. Brazil was chosen to host the symposium because of its strong

and growing SBSE community.

The organizers provided attendees with a truly amazing experience by

holding the event in five-star resort and making every effort to make the

event enjoyable, educational and interesting.

This year the symposium broke the record for highest number of sub-

mission, albeit by a small margin, which is impressive considering it is a

standalone edition as opposed to the FSE-collocated edition of odd years.

Every day the symposium kicked off with a keynote or an invited talk

from a leader in the field. Professor Mark Harman gave a talk on the first

day that explored the future directions of SBSE in areas such as genetic

improvements and non-functional enhancement.

The second day began with a keynote from Professor Mauro Pezze who

discussed redundancy in software and its applications and how SBSE can

be used to identify redundant functions. The keynote speaker on the

third day was Professor Marc Schoenauer who gave a very interesting

talk about programming by ranking.

The three days of the symposium were packed with interesting talks that

discuss applications of SBSE in a wide range of software engineering ac-

tivities such as system design, requirements engineering, testing and

the production of documentation. One thing to note was that with all the

temptations just a few steps away from the conference room (i.e. the

sun and beach), it was clear that the attendees were more committed to

learning more about the current trends in SBSE.

Overall the symposium was a fun and enlightening experience. I am sure

many participants came back thinking about how to apply some of the

ideas to their work. I know I spent the long flight back to London fantasiz-

ing about how genetic programming can produce customized similarity

functions.
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Challenge Track

The challenge track at SSBSE this year was probably the most exciting

part of the symposium. Four very interesting papers were presented over

two sessions. At the end of the second session the audience voted for

the winner. The topics covered genetic improvements, fault prediction

and GUI crashing. The winning paper was Babel Pidgin: SBSE Can Grow

and Graft Entirely New Functionality into a Real World System by Mark

Harman, Yue Jia, and William B. Langdon.

Graduate Track

Shadi Ghaith was the graduate track winner by receiving the highest to-

tal scores from the reviewers. This was only fitting as Shadi kindly volun-

teered to cover for various members of his team and ended up presenting

three papers in addition to his own.
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New Theses

Evolving Multimodal Behavior Through Modular
Multiobjective Neuroevolution

Dissertation by Jacob Schrum

Intelligent organisms do not simply perform one task, but exhibit multi-

ple distinct modes of behavior. For instance, humans can swim, climb,

write, solve problems, and play sports. To be fully autonomous and ro-

bust, it would be advantageous for artificial agents, both in physical and

virtual worlds, to exhibit a similar diversity of behaviors. Artificial evo-

lution, in particular neuroevolution [3, 4], is known to be capable of dis-

covering complex agent behavior. This dissertation expands on existing

neuroevolution methods, specifically NEAT (Neuro-Evolution of Augment-

ing Topologies [7]), to make the discovery of multiple modes of behavior

possible. More specifically, it proposes four extensions: (1) multiobjective

evolution, (2) sensors that are split up according to context, (3) modular

neural network structures, and (4) fitness-based shaping. All of these

technical contributions are incorporated into the software framework of

Modular Multiobjective NEAT (MM-NEAT), which can be downloaded here.

First, multiobjective optimization is used to assure that different objec-

tives associated with different modes of behavior each receive direct fo-

cus, using the Non-dominated Sorting Genetic Algorithm II [2].

Second, sensors are designed to allow multiple different interpretations

of objects in the environment. If a sensor reading can be interpreted in

several different ways depending on context, then it is a conflict sensor.

Learning to use such general sensors is difficult. In contrast, split sensors

assign individual sensor readings to different sensors depending on some

human-specified context, such as whether the sensed agent is currently

a threat or not. Split sensors can bias evolutionary search in a useful way,

but a human designer may not know how to construct useful split sensors

for an arbitrary domain. Therefore, ways of automatically splitting up a

domain across different modes of behavior, without expert knowledge,

are developed in the dissertation.

The third contribution allows evolution to discover what modes of behav-

ior to use, and how to use them. Evolving networks are given ways of rep-

resenting multiple policies explicitly via modular architectures. Specifi-

cally, each of several output modules defines a separate mode of behav-

ior. Each module has a preference neuron, which indicates the network’s

preference for using a particular module on a given time step. By let-

ting the module with the highest preference output control the agent,

evolution can determine when to use a particular module in addition to

the behavior of each module. Additionally, evolution can discover the

number of modules to use via several variants of Module Mutation [6], a

mutation operation that adds a new output module to the network. If a

user wants to specify how to use specific network modules, a topology

similar to that in Multitask Learning [1] can be used. However, the re-

sults show that in complex domains, it is better to let evolution discover

its own module usage with the help of preference neurons.

IN IN IN ININ

Fig. 1: Network with two modules, each consisting of two neurons to define be-

havior, and a gray preference neuron.
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The fourth technical contribution of the dissertation is Targeting Un-

achieved Goals (TUG [5]), a way of dynamically adjusting which objec-

tives are active in order to lead the population toward the most promising

areas of the search space. TUG turns off objectives in which the average

performance of the population surpasses numeric goals. Objectives can

be turned back on if performance decreases again, but if all goals are

achieved, then all objectives are reactivated, and all goal values are in-

creased. As a result, the population is gradually pushed to reach better

scores in all objectives.

In addition to the technical contributions, the dissertation provides a way

of classifying domains based on how tasks are divided within them, and

recommendations on which methods to apply in each type of domain.

First, isolated tasks are completely independent from each other, but are

performed serially by a single agent that must perform well in all of them.

Second, interleaved tasks alternate back and forth in such a way that

an agent can prepare for one task while in another. Interleaved tasks

are clearly delineated, but not independent, because the actions in one

task can affect the possible outcomes in other tasks. Third, in blended

tasks there is no longer a clear border between tasks, resulting in blended

situations where an agent must deal with multiple tasks simultaneously.

Example domains of each type are used to evaluate the methods de-

veloped for the dissertation, but the most challenging example domain

is Ms. Pac-Man, a popular classic arcade game with blended tasks (Ms.

Pac-Man must deal with both threat and edible ghosts at the same time).

However, the methods developed for this dissertation allow Ms. Pac-Man

to evolve multimodal behavior appropriate for handling these blended

tasks. In fact, the best evolved task division is unexpected, because

it dedicates a module to luring ghosts near power pills before eating

them, which is a powerful play strategy that leads to high scores sur-

passing those of previously evaluated methods in this domain. Specifi-

cally, the multimodal networks evolved in this dissertation achieve higher

scores than Ant Colony Optimization, Monte-Carlo Tree Search, and sev-

eral forms of Genetic Programming.

In sum, the results in this dissertation demonstrate that complex mul-

timodal behavior can be evolved automatically, resulting in robust and

intelligent agents.

Fig. 2: Ms. Pac-Man lures ghosts near a power pill before eating them.
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Data-parallel Structural Optimisation
in Agent-based Models

Dissertation by Alwyn V. Husselmann

Agent-based models offer valuable simulations of various phenomena

found in disciplines such as ecology [1], microbiology [2] and social sci-

ence [3]. Even the spatial distribution of crime can be simulated [4] using

this method.Representing discrete entities in a system as autonomous,

interactive and situated in some manner, gives rise to the notion of

“bottom-up” modelling, as opposed to “top-down” approaches commonly

done using partial differential equations [5]. While not considered a

replacement for these, agent-based modelling (ABM) is another potent

computational science tool.

Several facets of ABM make it relevant in the realms of evolutionary op-

timisation. Particularly, a well-researched area within ABM is that of pa-

rameter calibration. The typical process of calibrating the parameters of

an ABM to more accurately reflect a natural phenomenon under scrutiny

is a very time consuming process. It was not long before this process was

reinterpreted as an optimisation problem under the genetic algorithm [6].

Other past attempts showed that objective functions were understand-

ably difficult to formulate in these situations. While reasonably success-

ful, research effort dwindled under the excessive computational strain

of evaluation and continuous averaging necessary, in order to eliminate

stochastic variation, as is ubiquitous in ABM.

The fortunate development of technologies such as CUDA [7] has

breathed life into many projects. For those unfamiliar, CUDA is a soft-

ware architecture which streamlines the use of NVIDIA graphics process-

ing units for scientific computing. CUDA presents an excellent opportu-

nity to drive the study of optimisation further in the context of ABM, and

indeed many other evolutionary computation applications. Where only

small agent-based models could be calibrated using metaheuristics, it is

now much faster and larger systems clearly within reach.

An aspect of optimisation not normally considered in the context of ABM

is that of combinatorial optimisation, or the structural optimisation of

an agent-based model. Very few studies have been conducted on this.

Junges and Klügl investigated this under the term of behaviour optimisa-

tion [8] and developed a methodology for building agent-based models

guided by machine learning.

Privošnik in 2002 evolved agents operated by finite state machines which

solved the Ant Hill problem [9], and van Berkel [10] generated models in

the style of genetic programming with predefined building blocks.

With high performance computing at hand, the author of this thesis set

out to streamline structural (behavioural) optimisation in ABM. A problem

that presented itself very early on in the simple formulation of a genetic

programming (GP) algorithm was the choice of terminals and nontermi-

nals, a difficult issue so far frustratingly unsolved [11]. In the formulation

of an agent-based model, it is common for experts in the domain to be

familiar with a significant portion of a model. It was therefore reasonable

to seek a method of reducing the search space based on this assumption.

It was not immediately obvious how to accomplish this.

Domain-specific languages have in the past been successful in simplify-

ing the development of code for those who are not familiar with program-

ming [12]. Languages typically do not offer a built-in pre-processor style

optimiser, but the use of a language to aid in the search for a method to

both expose and allow optimisation provided a natural method for limit-

ing search space by forcing the user to identify what part of their model

is “uncertain”. An easy method of creating domain-specific languages is

done by Multi-stage Programming (MSP), a programming paradigm de-

veloped by Walid Taha [13, 14]. This made possible a language devel-

oped by DeVito and colleagues at Stanford University [15]. Terra is con-

sidered the low-level counterpart to the Lua scripting language, built on

LuaJIT and LLVM. It is a compiled language which allows run-time com-

piled code generation. In this thesis, the Terra language was used to

create a new agent-based modelling language called MOL. An example

of this language is shown in Listing 1.

For brevity, not all the features of this language can be detailed here.

However, of particular note is line 19. This line provides an objective func-

tion, and a block of code, given by the operator, as starting point. The

objective function cell_count is in fact a macro, defined above the code in

pure Terra. Due to Terra’s use of LLVM, it is also possible to link arbitrary

libraries to this language, and use them at run-time with compiled calls.

Using Clang through Terra allows one to write C code within the same file,

and use this directly within this modeling language. Through compilers

written in Terra, MOL is currently compiled without modification to both

CUDA code, as well as single-threaded code.
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1 mol
2 if me > 0 then
3
4 defvar I = compute_illuminance
5 defvar state = get_my_state
6 defvar myspecies = get_my_species
7 defvar activated_counter = get_activated_state_counter
8
9 if state == ACTIVATED then

10 if (randomfloat) < GAMMA then
11 increment_activated_state_counter
12 go_to_resting
13 else
14 if randomfloat < BETA * I then
15 go_to_inhibited
16 end
17 end
18 else
19 select recombination to minimise(cell_count)
20 if state == INHIBITED then
21 if randomfloat < DELTA then go_to_resting end
22 else
23 if state == RESTING then
24
25 if randomfloat < (get_split_probability) then
26 make_split
27 else
28 if randomfloat < (ALPHA*I) then go_to_activated end
29 end
30 end
31 end
32 end
33 end
34
35 defvar dir = get_kawasaki_move
36 move dir
37 end
38 end

Listing 1: A Photobioreactor model in MOL, built to model the growth kinetics and optimise yield times.
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The optimisation algorithm used in this language is a very simple evo-

lutionary optimiser operating on K-expressions of the Gene Expression

Programming algorithm [16]. The optimiser operates directly on syntax

trees in Lua tables, freely translating between strings of K-expressions

and trees for applying evolutionary operators. Without run-time code

generation, it would have been much more computationally expensive to

evaluate each candidate model.

In summary, this language has successfully evolved finite state machines

for a photobioreactor agent-based model, and has also solved the Santa

Fe Ant Trail problem. It performs well, and it is anticipated that other

platforms such as multi-core processors and MPI would be useful in future

for accelerating simulations based on available hardware. It is hoped that

the language will be made available in the near future for the public to

use.
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Alwyn Husselmann recently completed his Ph.D. in

Computer Science in 2014 at Massey University, which

was supervised by Prof. Ken Hawick and Prof. Chris

Scogings. His research shed light on evolutionary com-

putation in the context of agent-based modeling, in-

volving parallel computing and multi-stage programming. He is cur-

rently lecturing at the same institute, and investigating automatic

platform code generation for combinatorial metaheuristic optimis-

ers.

Dissertation: WWW
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Calls and Calendar

January 2015

Learning and Intelligent OptimizatioN Conference (LION9)

January 12-16, 2015, Lille, France

Homepage: http://www.lifl.fr/LION9/

The large variety of heuristic algorithms for hard optimization problems

raises numerous interesting and challenging issues. Practitioners are

confronted with the burden of selecting the most appropriate method,

in many cases through an expensive algorithm configuration and param-

eter tuning process, and subject to a steep learning curve. Scientists

seek theoretical insights and demand a sound experimental methodol-

ogy for evaluating algorithms and assessing strengths and weaknesses.

A necessary prerequisite for this effort is a clear separation between the

algorithm and the experimenter, who, in too many cases, is "in the loop"

as a crucial intelligent learning component. Both issues are related to

designing and engineering ways of "learning" about the performance of

different techniques, and ways of using past experience about the algo-

rithm behavior to improve performance in the future. Intelligent learning

schemes for mining the knowledge obtained from different runs or during

a single run can improve the algorithm development and design process

and simplify the applications of high-performance optimization methods.

Combinations of algorithms can further improve the robustness and per-

formance of the individual components provided that sufficient knowl-

edge of the relationship between problem instance characteristics and

algorithm performance is obtained.

This meeting, which continues the successful series of LION events (see

LION 5 in Rome, LION 6 in Paris, LION 7 in Catania, and LION 8 in

Gainesville), is exploring the intersections and uncharted territories be-

tween machine learning, artificial intelligence, mathematical program-

ming and algorithms for hard optimization problems. The main purpose

of the event is to bring together experts from these areas to discuss new

ideas and methods, challenges and opportunities in various application

areas, general trends and specific developments.

Conference Organizers:

Clarisse Dhaenens

Laetitia Jourdan

Marie-Eléonore Marmion

Important Dates

Conference: January 12-16, 2015

FOGA XIII – Foundation of Genetic Algorithms

Call for Participation

January 17-20, 2015, Aberystwyth, Wales, UK

Homepage: http://www.sigevo.org/foga-2015

FOGA 2015 takes place in Aberystwyth, Wales (UK) January 17-20, 2015.

FOGA is the premier event on the theoretical foundations of evolutionary

computation and all kinds of randomised search heuristics, including but

not limited to evolutionary algorithms, ant colony optimisation, artificial

immune systems and particle swarm optimisation. Accepted papers will

be published in post-conference proceedings by ACM Press.

Submission deadline was 31/08/2014. After rigorous peer reviewing 16

papers have been accepted for presentation and publication. The list of

accepted papers is online: http://foga2015.dcs.aber.ac.uk/papers.html
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We are inviting researchers to attend FOGA and join us in lively

discussions about the presented work. The deadline for stan-

dard registration is on 30/11/2014. Late registration is possi-

ble, although at a higher cost. Registration is done online:

http://foga2015.dcs.aber.ac.uk/registration.html

Registration includes admission to all sessions on all four days; coffee

breaks on all four days; lunch on the three days without an excursion;

participation in the excursion including Welsh tea; conference dinner; ac-

cess to pre-proceedings; printed post-proceedings.

Accepted papers

Sandra Astete-Morales, Marie-Liesse Cauwet, Olivier Teytaud: Evo-

lution Strategies with Additive Noise: A Convergence Rate Lower

Bound.

Golnaz Badkobeh, Per Kristian Lehre, Dirk Sudholt: Black-box Com-

plexity of Parallel Search with Distributed Populations.

Keki Burjorjee: Implicit Concurrency in Evolutionary Computation.

Marie-Liesse Cauwet, Shih-Yuan Chiu, Kuo-Min Lin, David Saint-

Pierre, Fabien Teytaud, Olivier Teytaud, Shi-Jim Yen: Parallel Evolu-

tionary Algorithms Performing Pairwise Comparisons.

Duc-Cuong Dang, Per Kristian Lehre: Efficient Optimisation of Noisy

Fitness Functions with Population-based Evolutionary Algorithms.

Mathys C. Du Plessis, Andries P. Engelbrecht, Andre Calitz: Self-

Adapting the Brownian Radius in a Differential Evolution Algorithm

for Dynamic Environments.

Thomas Jansen: On the Black-Box Complexity of Example Functions:

The Real Jump Function.

Timo Kötzing, Andrei Lissovoi, Carsten Witt: (1+1) EA on Generalized

Dynamic OneMax.

Oswin Krause, Christian Igel: A More Efficient Rank-one Covariance

Matrix Update for Evolution Strategies.

Johannes Lengler, Nick Spooner: Fixed Budget Performance of the

(1+1)-EA on Linear Functions.

Alan Lockett: Insights From Adversarial Fitness Functions.

Luigi Malagò, Giovanni Pistone: Information Geometry of Gaussian

Distributions in View of Stochastic Optimization.

Richard Mealing, Jonathan Shapiro: Convergence of Strategies in

Simple Co-Adapting Games.

Adam Prügel-Bennett, Jonathan Rowe, Jonathan Shapiro: Run-Time

Analysis of Population-Based Evolutionary Algorithm in Noisy Envi-

ronments.

Eric Scott, Kenneth De Jong: Understanding Simple Asynchronous

Evolutionary Algorithms.

Renato Tinos, Darrell Whitley, Francisco Chicano: Partition Crossover

for Pseudo-Boolean Optimization.

More information about FOGA can be found at its web site:

http://www.sigevo.org/foga-2015

Organizers
Jun He Aberystwyth University, Wales, UK

Thomas Jansen Aberystwyth University, Wales, UK

Gabriela Ochoa University of Stirling, Scotland, UK

Christine Zarges University of Birmingham, England, UK

April 2015

Evostar 2015 - EuroGP, EvoCOP, EvoBIO and EvoWorkshops

April 8-10, 2015, Copenhagen, Denmark

Submission deadline: November 25, 2014

Homepage: www.evostar.org

EvoStar comprises of five co-located conferences run each spring at dif-

ferent locations throughout Europe. These events arose out of workshops

originally developed by EvoNet, the Network of Excellence in Evolution-

ary Computing, established by the Information Societies Technology Pro-

gramme of the European Commission, and they represent a continuity of

research collaboration stretching back nearly 20 years.
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The five conferences include:

EuroGP 18th European Conference on Genetic Programming

EvoBIO 12th European Conference on Evolutionary Computation,

Machine Learning and Data Mining in Computational Biology

EvoCOP 15th European Conference on Evolutionary Computation in

Combinatorial Optimisation

EvoMUSART 4rd International Conference on Evolutionary and Bio-

logically Inspired Music, Sound, Art and Design

EvoApplications 16th European Conference on the Applications of

Evolutionary and bio-inspired Computation including the following

tracks

• EvoCOMNET Application of Nature-inspired Techniques for

Communication Networks and other Parallel and Distributed

Systems

• EvoCOMPLEX Applications of algorithms and complex systems

• EvoENERGY Evolutionary Algorithms in Energy Applications

• EvoFIN Track on Evolutionary Computation in Finance and Eco-

nomics

• EvoGAMES Bio-inspired Algorithms in Games

• EvoHOT Bio-Inspired Heuristics for Design Automation

• EvoIASP Evolutionary computation in image analysis, signal

processing and pattern recognition

• EvoINDUSTRY The application of Nature-Inspired Techniques in

industrial settings

• EvoNUM Bio-inspired algorithms for continuous parameter op-

timisation

• EvoPAR Parallel and distributed Infrastructures

• EvoRISK Computational Intelligence for Risk Management, Se-

curity and Defense Applications

• EvoROBOT Evolutionary Computation in Robotics

• EvoSTOC Evolutionary Algorithms in Stochastic and Dynamic

Environments

Featuring the latest in theoretical and applied research, EVO* topics in-

clude recent genetic programming challenges, evolutionary and other

meta-heuristic approaches for combinatorial optimisation, evolutionary

algorithms, machine learning and data mining techniques in the bio-

sciences, in numerical optimisation, in music and art domains, in image

analysis and signal processing, in hardware optimisation and in a wide

range of applications to scientific, industrial, financial and other real-

world problems.

EVO* Poster

You can download the EVO* poster advertisement in PDF format here

EVO* Call for Papers

You can access the call for papers of all the EVO* conferences here.

EVO* Coordinator:

Jennifer Willies, Napier University, United Kingdom

j.willies@napier.ac.uk

General Chairs:

Penousal Machado, Malcom Heywood, James McDermott, Gabriela

Ochoa, Francisco Chicano, Colin Johnson, Adrian Carballai, João Correia,

Antonio Mora

Local Chair:

Paolo Burelli, Aalborg University

Julian Togelius, IT University of Copenhagen

Publicity Chair:

Mauro Castelli & Paolo García Sánchez

Important Dates
Submission Deadline: 25 November 2014

Notification: 07 January 2015

Camera-ready: 21 January 2015

Conference: 8-10 April 2015
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May 2015

2015 IEEE Congress on Evolutionary Computation (CEC 2015)

May 25-28, 2015, Sendai, Japan

Homepage: http://sites.ieee.org/cec2015/

Deadline December 19, 2014

The annual IEEE CEC is one of the leading events in the field of evo-

lutionary computation. It covers all topics in evolutionary computation

including: Ant colony optimization, Artificial immune systems, Coevolu-

tionary systems, Cultural algorithms, Differential evolution, Estimation

of distribution algorithms, Evolutionary programming, Evolution strate-

gies, Genetic algorithms, Genetic programming, Heuristics, metaheuris-

tics and hyper-heuristics, Interactive evolutionary computation, Learning

classifier systems, Memetic, multi-meme and hybrid algorithms, Molec-

ular and quantum computing, Multi-objective evolutionary algorithms,

Parallel and distributed algorithms, Particle swarm optimization, Theory

and Implementation, Adaptive dynamic programming and reinforcement

learning, Coevolution and collective behavior, Convergence, scalability

and complexity analysis, Evolutionary computation theory, Representa-

tion and operators, Self-adaptation in evolutionary computation, Opti-

mization, Numerical optimization, Discrete and combinatorial optimiza-

tion, Multiobjective optimization.

IEEE CEC 2015 will feature a world-class conference that aims to bring to-

gether researchers and practitioners in the field of evolutionary computa-

tion and computational intelligence from all around the globe. Technical

exchanges within the research community will encompass keynote lec-

tures, regular and special sessions, tutorials, and competitions as well as

poster presentations. In addition, participants will be treated to a series

of social functions, receptions, and networking to establish new connec-

tions and foster everlasting friendship among fellow counterparts.

Important Dates:

Competition Proposals Due: September 26, 2014

Tutorial Proposals Due: January 9, 2015

Special Session Proposals Due: October 31, 2014

Paper Submission Due: December 19, 2014

July 2015

GECCO 2015 - Genetic and Evolutionary Computation Conference

July 11-15, 2015, Madrid, Spain

Homepage: http://www.sigevo.org/gecco-2015

Abstract submission deadline: January 21, 2015

Full paper submission deadline: February 4, 2015

The Genetic and Evolutionary Computation Conference (GECCO-2015)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

Workshop Submission Deadlines

Workshop Submission Deadline March 28, 2014

Decision Notification April 15, 2014

Camera-ready Submission April 25, 2014

Conference July 12-16, 2014

Organizers

General Chair: Anna I Esparcia-Alcázar

Editor-in-Chief: Sara Silva

Local Chairs: J. Ignacio (Iñaki) Hidalgo

Luis Hernández-Yáñez

Publicity Chair: A. Şima Etaner Uyar

Tutorials Chair: Anabela Simões

Workshops Chair: Gisele Pappa

Competitions Chair: Mike Preuss

Social Media Chair: Pablo García-Sánchez

Business Committee: Jürgen Branke

Pier Luca Lanzi

EC in Practice Chairs: Thomas Bartz-Beielstein

Jörn Mehnen
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Venue

Madrid, the capital of Spain, is a cosmopolitan city that combines the

infrastructures and status as an economic, financial, administrative and

service centre, with a large cultural and artistic heritage, a legacy of cen-

turies of exciting history. Madrid has one of the most important historic

centres of all the great European cities. The historic centre, also known as

the "Madrid of Los Austrias" (in reference to the Hapsburg monarchs), and

the spectacular Plaza Mayor square are a living example of the nascent

splendour of the city in the 16th and 17th centuries. Art and culture

play a key role in Madrid’s cultural life. The capital has over 60 muse-

ums which cover every field of human knowledge. Highlights include the

Prado Museum, the Thyssen-Bornemisza Museum and the Reina Sofía Na-

tional Art Centre, dedicated to contemporary Spanish art. Madrid’s ex-

tensive and beautifully maintained parks and gardens —-like the Retiro

park, formerly the recreational estate to the Spanish monarchs, the Casa

de Campo and the Juan Carlos I park—- offer inhabitants and visitors the

chance to enjoy the sunshine, stroll, row on their lakes or feed the squir-

rels, in one of the greenest capitals in Europe. But if there is one thing

that sets Madrid apart, it must be its deep and infectious passion for life

that finds its outlet in the friendly and open character of its inhabitants.

Concerts, exhibitions, ballets, a select theatre offer, the latest film re-

leases, the opportunity to enjoy a wide range of the best Spanish and

international gastronomy, to savour the charms of its bars and taverns.

The conference will be held at The Meliá Castilla hotel, which is con-

sidered one of the most emblematic hotels in Madrid, with an appeal-

ing blend of perfectly balanced classic and contemporary styles, where

peace and urban life are accomplices to delight the guests. The excel-

lent location, a few minutes from Paseo de la Castellana, 15 minutes

from Barajas airport, near Chamartín train station and the Real Madrid

Santiago Bernabéu football stadium, makes the Meliá Castilla the perfect

choice for your visit to Madrid.

More Information

Visit www.sigevo.org/gecco-2015 for information about electronic sub-

mission procedures, formatting details, student travel grants, the latest

list of tutorials and workshop, late-breaking abstracts, and more.

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.
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About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate to an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.
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