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EDITORIAL

Editorial

G
ECCO-2014 was great as usual and Vancouver was an amazing venue. Great hotel, excellent

nearby restaurants. And what about the weather huh? Sunny, clear sky, hot but not too hot.

In other words, perfect. Dirk Arnold, Christian Igel, and their team did an amazing job. They

surely raised the bar for the next GECCO organizers!

Before leaving for vacation, I am very happy to bring you the first issue of the new volume. As I anticipated

during the SIGEVO meeting, the newsletter is four issues behind but we will try to catch up by April 2015

which would put us right on schedule. But to succeed we need your help. So, if you have EC applications

that you wish to showcase to a broader audience, if you just published new Master or PhD theses, if you

want to let our community know how your workshop or your conference turned out, if you have new EC

software available, if you have a lab (like BEACON) that you wish to advertise, just drop me an email.

In this issue we have a new article by James McDermott about an approach to visualize evolution and an

article by the winners of the Virtual Creatures Competition, Nick Cheney, Robert MacCurdy, Jeff Clune and

Hod Lipson, who — as you may guess — provided the images for the nice cover. The issue continues with

the presentation of the BEACON Center for the Study of Evolution in Action and William Raffe’s new PhD

thesis. At the end, the usual rich list of forthcoming events.

As always, due thanks to the people who made this possible: James McDermott, Nick Cheney, Robert

MacCurdy, Jeff Clune, Hod Lipson, William L. Raffe, Daniele Loiacono, Cristiana Bolchini, Viola Schiaffonati,

and Francesco Amigoni.

Have a great holiday. See you in September!

Pier Luca

August 4, 2014
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Visualising Evolutionary Search
Spaces
James McDermott (jmmcd@jmmcd.net)
Management Information Systems, Lochlann Quinn School of Business — Natural Computing Research and
Applications Group, Complex and Adaptive Systems Lab, University College Dublin, Ireland

U
nderstanding the structure of search spaces can help us to

design better search algorithms, and it is natural to try to un-

derstand search spaces by visualising them. For typical evo-

lutionary search spaces, like the space of genetic program-

ming trees, visualising them directly is impossible, because of their large

dimensionality. However, we can use the idea of distances on search

spaces to project them into two dimensions, expose their structure, and

obtain useful and attractive visualisations.

1 Introduction

We are physical beings, and our thinking is deeply intertwined with our

physicality. Perhaps the best examples come from our speech: in English,

we say that we put ourselves in someone else’s shoes; we move forward,

when in fact time is just passing; we climb the ladder of promotion. More

specifically, our visual sense is so central to our thinking that it is hard to

carry on a conversation without appealing to visual metaphors. We see

the other person’s point of view; we look into the past; we see things in

our minds’ eye; we see the way out of a problem.

When we use visualisations to help us understand data – whether on pa-

per, on a computer screen, or even using some 3D technology – we are

“using vision to think” [3]. Visualisations have become central in making

abstract and complex situations more concrete and understandable.
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Fig. 1: Fitness landscapes representing search in two dimensions, with fitness

as height.

Few everyday problems present as much abstraction and complexity as

those which occur in our field of evolutionary computation (EC). In par-

ticular, the physical metaphor of the fitness landscape is central when

we discuss how EC works. The fitness landscape is often pictured as

something like a mountain range, with two dimensions representing the

search space and its connectivity, and height representing fitness. As

a metaphor, the fitness landscape allows us to imagine search from the

inside: we place ourselves in the search space, and look around, and

imagine the properties of the landscape which might lead to difficulties

for search (see Figure 1).
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(a) Pseudo-3D view (b) “Flattened” view with

graph layout algorithm

Fig. 2: The four-dimensional hypercube representing bitstrings of length 4 with

bitflip mutation.

As a metaphor, the fitness landscape is invaluable. However, as a data

visualisation, it is rather limited: it works well only when the search space

is a subset of R2. Realistic search spaces are of higher dimensionality, or

are not real-valued (e.g. spaces of bitstrings or permutations), or don’t

have an obvious number of dimensions (e.g. spaces of trees). Visualising

such spaces is not easy.

Even when omitting fitness information, and visualising just the connec-

tivity of the space, the results can be unsatisfactory. A search space and

a mutation operator together constitute a directed graph, which has a

natural visualisation. Individuals or points in the space are nodes; there

is a directed edge from one node to another if mutation from one to the

other is possible. However, for larger spaces, drawing such a graph tends

to lead to complicated, tangled pictures. Even with bitstrings of length 4,

the visualisation becomes complicated. Graph layout algorithms can be

used to disentangle the edges as much as possible, but the results can

still be hard to interpret (see Figure 2).

We approach the problem of visualising EC spaces by defining the dis-

tance between pairs of individuals. Depending on the EC representation,

distance can reflect genotypic or phenotypic dissimilarity, or it can be

based on mutation transition probabilities or related quantities, as de-

scribed in Section 2. We then use multi-dimensional scaling (MDS), de-

scribed in Section 3, to produce a two-dimensional layout for the individ-

uals in a space. This can be plotted directly, omitting edges, in contrast

to graph layout algorithms. The results, shown in Section 4, allow us to

visualise the distribution of individuals and obtain hints as to the struc-

ture of several (very small) search spaces: bitstrings, permutations, and

especially program trees. In Section 5 we consider some related work,

and Section 6 concludes.

2 Defining distances on search spaces

A distance is a real-valued function of two arguments which abstracts

the notion of physical distance. For a pair of objects, a distance function

gives a numerical value reflecting the dissimilarity, dissociation, or phys-

ical distance per se between them: small values mean they are similar,

associated, or nearby; larger values mean the opposite. A distance which

obeys certain axioms is called a metric, but the axioms are not essential

to our task.

In the context of EC, distances between individuals arise in several ways,

depending on the representation. Genotypic, phenotypic, and mutation

operator properties can be used to define distances.

We will consider three (very small) search spaces in different represen-

tations. For each, we define one or more distances between pairs of indi-

viduals. Since we will also visualise fitness, we also define simple fitness

functions for each.

For bitstrings, as used in genetic algorithms, the Hamming distance is

well-known. We consider the 1024 bitstrings of length 10. Fitness is on

the one-max problem.

For permutations, as used in travelling salesman problems (TSP) and

similar, a suitable distance is the Kendall τ distance [14, 24]. We consider

the 360 distinct permutations of length 7. Fitness is on a random 7-city

TSP instance.

We will focus particularly on program trees, as used in genetic pro-

gramming. We consider the trees composed of the four functions +, −,

∗, / (with / functioning as the analytic quotient of [17] to avoid division

by zero) and the two variables x and y, with a maximum depth of two,

leading to a maximum number of nodes of 7. The number of trees in this

space is 1298. We will use subtree mutation as the mutation operator,

and a two-variable symbolic regression problem from [20] as the fitness

function. We can define multiple genotypic (syntactic) and phenotypic

(semantic) distances. We will use four syntactic distances:

TED Tree-edit distance [19] counts the number of atomic edits (node

additions, deletions, or re-labellings) which must be carried out to

transform one tree into another.
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TAD Tree-alignment distance [30] aligns trees, allowing for empty nodes

in the alignment, and counts the number of locations in which they

differ. We use a variation in which differences at deeper locations

are de-weighted.

OVD Overlap distance [25] calculates all subtrees in both trees and the

number of subtrees they have in common.

FVD A distance based on the Euclidean distance of the trees in a simple

feature space where the features are number of nodes, minimum

and maximum depth, fan-out, and symmetry.

We will also define semantic distance on real-valued program trees:

SEMD Semantic distance is based on the Euclidean distance between the

two trees’ vectors of outputs, when they are executed on the vector

of fitness cases. We take the log of the Euclidean distance, since

Euclidean distances between GP individuals tend to include some

very large outliers.

For all EC representations, we can also define distances based on the

action of genetic operators – in the simplest case, mutation. We will use

two mutation-based distances:

SDTP The symmetric transition probability distance SDTP(u,v) is based

on the transition probability TP(u,v), i.e. the probability that u will

transition to v in a single step of the mutation operator. We take the

negative log of this, so that larger values mean more inaccessible:

DTP(u,v) = − log(TP(u,v)). We define DTP(u,u) = 0. Finally we sym-

metrize by taking SDTP (u,v) = (DTP(u,v)+DTP(v,u))/2. Symmetry is

necessary for this application since the visualisation technique we

use fails with asymmetric distances (see Section 3, next).

CT The commute time is the expected number of steps required to tran-

sition from one individual to another and back. It is naturally sym-

metric. It can be derived using Markov chain methods from the tran-

sition probabilities.
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Fig. 3: The matrix of distances between points (left) are enough for MDS to de-

termine their layout in 2D (right).

3 Multi-dimensional scaling

The technique we will use to project the search space into two dimen-

sions is multi-dimensional scaling, or MDS [15, 4]. It is commonly used

as a dimensionality-reduction technique: given p points distributed in Rn,

the goal is to find p points in Rm (m < n) whose inter-point distances ap-

proximate the original inter-point distances. It works by scattering points

randomly in Rm, then adjusting them iteratively in order to approximate

the original distances. The algorithm is guaranteed to produce a result,

though there is no guarantee that the distances between the points pro-

duced will closely approximate the original distances.

In fact MDS is somewhat more general: the input points need not be

given explicitly, but instead just their inter-point distances need be given:

see Figure 3. They need not correspond to Euclidean distances: they

might arise, for example, as entries of a confusion matrix, or (inverted)

correlation coefficients [15].

They can also arise in several natural ways between pairs of individuals in

EC search spaces, as explained in Section 2. We can therefore calculate

inter-point distances for all pairs of individuals and use MDS with m = 2 to

produce a two-dimensional visualisation of the space.

SIGEVOlution Volume 7, Issue 1 4



EDITORIAL

MDS can be seen as a generalisation of the graph layout algorithm used

in our Figure 2b. That algorithm is due to [13] and is available as neato1.

It uses a spring model. It works by trying to push the nodes to positions

such that the Euclidean distance in the plane between each pair of nodes

approximates the shortest path distance between them in the graph. It

then adds edges as appropriate. MDS is a generalisation of this because

it can use any distance matrix, rather than just the shortest path distance

arising in a graph.

4 Visualisations

We use MDS to obtain a layout of the individuals and add fitness infor-

mation as colour. We will use different colour maps in the different im-

ages purely for aesthetic effect, but regardless of the colour map, darker

colours indicate better fitness. Results for the three search spaces are

shown in Figure 4.

Both the bitstring and the permutation spaces are highly symmetric, as

expected, and the tree space less so. The permutation and tree images

correctly show that the fitness landscape is rather rugged, with good fit-

ness values scattered among bad ones. The bitstring image shows a

smoother landscape. However it fails to show a smooth upward gradient

from every individual towards the optimum. Such a gradient does exist

in the search space for the one-max problem because every individual

other than the optimum can be improved by a single bit-flip mutation.

Although it would be possible to lay the individuals out to show this gra-

dient, it would disimprove the layout with respect to individuals other

than the optimum.

In the tree space we also use larger markers to represent larger trees

(measured as number of nodes). The tree space under TED is shown as

consisting of clumps of trees, arranged with some regularity. The two

one-node trees x and y are marked with very small markers, outliers from

the main patterns. The larger trees (of which there are many) tend to

clump together, but in multiple clumps. The four-fold structure of the

space is visible, caused by the four non-terminal choices for the root node

of the tree.

1 Graphviz, http://www.graphviz.org

Next, we will compare the results of several different distances on the

tree space. In Figure 5, we find contrasting views. TAD and OVD give

similar overall behaviour to TED. OVD, however, has a two-fold rather

than four-fold structure. FVD, in contrast, produces a highly asymmetric

space. TAD puts the two one-node trees close together (the small mark-

ers in the centre-left of Figure 5a), since just a single node relabelling

is needed to transform between them. In contrast, OVD puts them as

far away from each other as possible (bottom-left and top-right of Fig-

ure 5b), since they share no subtrees. They are outliers according to FVD

(top-right of Figure 5c) since they differ in several features from all other

nodes. All three (TAD, OVD, and FVD) continue to exhibit some asymme-

try.

In Figure 6, two mutation-based distances are shown, and give very sim-

ilar results. SDTP produces a core of trees surrounded by an “asteroid

field”; CT produces a tighter version of the same thing. We can see these

images as visualisations of the fitness distance correlation (FDC) statis-

tic [12]. In a space with perfect FDC, we would find colours changing

uniformly with distance from the optimum. These images therefore illus-

trate the fact that GP symbolic regression does not give a perfect FDC.

The semantic distance used in Figure 7 is interesting because when in-

dividuals are laid out according to semantic distance, the space exhibits

a smooth gradient leading towards the optimum (darkest points). Here,

FDC is indeed perfect. Both images use SEMD, hence the layout of points

is the same. However, for the second image we have introduced a differ-

ent target function 1+ x2 (still using two variables and the same fitness

cases as before), so the smooth gradient leads to a different area of the

space.
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Fig. 4: Small spaces of bitstrings, permutations, and trees. Darker colours indicate better fitness.

5 Related work

Visual analytics are common for visualising EC data. Many EC papers

include graphs representing changes in solution quality over time, for

example. But the study of more advanced visualisations is an important

developing sub-field within EC. The VizGEC workshop has been running

for five years at the time of writing2. Franken [8] visualised the behaviour

of evolutionary algorithms under different hyperparameters. [16] used

several types of visual analytics to help understand the behaviour of in-

teractive EC. [2] and [9] visualised individuals’ genetic heritage, while

[18] did the same for island-model algorithms.

Several authors have used MDS and related ideas to produce low-

dimensional visualisations of EC populations and behaviour. [10] used

self-organising maps to visualise in two dimensions the current popula-

tion of an interactive EC run. This helps the user to interact with the

population. The self-organising map is a type of neural network which

can be used as an alternative to MDS, though the results have somewhat

different properties [6].

2 http://www.vizgec.ex.ac.uk/

Stan-Bishop et al. [26] used a custom force-directed layout algorithm to

visualise in two dimensions the current population of a non-interactive

EC run. Collins & O’Neill [5] used principal components analysis, a lin-

ear analogue of MDS, to create visualisations of GA search behaviour,

averaged over multiple runs. Pohlheim [23] used Sammon mapping, a

variant of MDS, to compare the paths through the search space taken by

multiple runs of an evolutionary algorithm. Valdés et al. [28] also used

Sammon mapping to project the Pareto fronts for several multi-objective

problems into three dimensions. The problem of visualising Pareto fronts

was also tackled in a line of research by [31]. In our work, it is the entire

space, rather than the current population or Pareto front, which is visu-

alised. Dybowski [7] used Sammon mapping to visualise the entire space

of bitstrings of length 5, similar to our Figure 4a (where bitstrings are of

length 10).

Outside the field of EC, [27] used the idea of tree edit distance to expose

the structure of a space of trees. This was not a search space: instead,

the trees were an internal representation used for image matching in a

computer vision application. Principal components analysis was used to

present visualisations similar to ours. Visualisations of tree spaces have

been used to help understand phylogenies in evolutionary biology [1, 11].

Again, tree edit distance provides a distance between pairs of trees, and

MDS provides a visualisation. Again, the main difference in our work is

that we are visualising a search space.

SIGEVOlution Volume 7, Issue 1 6
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Fig. 5: Trees of maximum depth 2, visualised using MDS under three syntactic distances. Darker colours indicate better fitness. Marker size represents number of

nodes in the tree.

6 Conclusions

We have produced two-dimensional visualisations of EC search spaces, in

which Euclidean distances between pairs of individuals approximate the

syntactic, semantic, or mutation-based distances between them. These

allow us to compare the structure of different spaces, see differences

in the behaviour of distances, understand the interplay between syntac-

tic distance, semantic distance, and fitness, and see the differences be-

tween different fitness functions.

In future work, we will consider more modern methods of projecting the

space into two dimensions, such as t-distributed stochastic neighbor em-

bedding [29]. We will also seek to visualise much larger search spaces

using sampling. We will also consider 3D visualisations.

Our code uses the MDS implementation of Scikit-learn [22] and the

tree-edit distance implementation of [21], and is available at https:

//github.com/jmmcd/GPDistance.
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I
n 1994, Karl Sims’ evolved virtual creatures showed the potential

of evolutionary algorithms to produce natural, complex morpholo-

gies and behaviors [30]. One might assume that nearly 20 years

of improvements in computational speed and evolutionary algo-

rithms would produce far more impressive organisms, yet the creatures

evolved in the field of artificial life today are not obviously more com-

plex, natural, or intelligent. Fig. 2 demonstrates an example of similar

complexity in robots evolved 17 years apart.

One hypothesis for why there has not been a clear increase in evolved

complexity is that most studies follow Sims in evolving morphologies with

a limited set of rigid elements [21, 4, 3, 16, 22]. Nature, in contrast,

composes organisms with a vast array of different materials, from soft

tissue to hard bone, and uses these materials to create sub-components

of arbitrary shapes. The ability to construct morphologies with hetero-

geneous materials enables nature to produce more complex, agile, high-

performing bodies [35].

Reprinted with permissions. Permission to make digital or hard copies of all or

part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To copy oth-

erwise, to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. GECCO’13, July 6–10, 2013, Amsterdam, The

Netherlands. Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

Fig. 1: An example of a natural looking morphology and behavior evolved by

combining a generative encoding with voxel-resolution soft, actuatable

materials. The soft robot gallops from left to right across the image with

a dog-like gait.

An open question is whether computational evolution will produce more

natural, complex forms if it is able to create organisms out of many ma-

terial types. Here we test that hypothesis by evolving morphologies com-

posed of voxels of different materials. They can be hard or soft, analo-

gous to bone or soft tissue, and inert or expandable, analogous to sup-

portive tissue or muscle. Contiguous patches of homogeneous voxels can

be thought of as different tissue structures.

Another hypothesis is that the encodings used in previous work limited

the design space. Direct encodings lack the regularity and evolvabil-

ity necessary to consistently produce regular morphologies and coordi-

nated behaviors [9, 6, 34, 16], and overly regular indirect encodings con-

strict the design space by disallowing complex regularities with varia-

tion [16, 31, 34]. We test this hypothesis by evolving morphologies with

the CPPN-NEAT encoding [31], which has been shown to create complex

regularities such as symmetry and repetition, both with and without vari-

ation (Fig. 3).
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CPPN-NEAT has shown these abilities in 2D images [29] and 3D objects

[7] and morphologies [4]. To test the impact of the CPPN encoding, we

compare it to a direct encoding. Overall, we find that evolution does

utilize additional materials made available to it; their availability led to

a significant amount of diverse, interesting, complex morphologies and

locomotion behaviors without hindering performance. Furthermore, the

generative encoding produced regular patterns of voxel ‘tissue’, leading

to fast, effective locomotion. In contrast, the direct encoding produced

no phenotypic regularity and led to poor performance.

Because it is notoriously difficult to quantify attributes such as “impres-

siveness” and “complexity”, we make no effort to do so here. Instead,

we attempt to visually represent the interesting diversity of morpholo-

gies and behaviors that evolved once evolution was provided with more

materials and a sophisticated encoding. We also demonstrate the ability

for this system to scale to higher resolutions and greater material diver-

sity without hindering performance.

Finally, we investigate the effects of different fitness functions, reveal-

ing that evolution with this encoding and material palette can create dif-

ferent bodies and behaviors in response to different environmental and

selective pressures.

1 Background

There are many Evolutionary Robotics papers with rigid-body robots [25].

However, few attempts have been made to evolve robots composed of

soft materials [27], and most of those attempts are limited to only a few

components. This paucity is due largely to the computational costs of

simulating flexible materials and because many genetic encodings do

not scale to large parameter spaces [5, 18].

The CPPN encoding abstracts how developmental biology builds natural

complexity, and has been shown to produce complex, natural-appearing

images and objects (Fig. 3) [29, 7, 31]. Auerbach and Bongard used this

generative encoding to evolve robotic structures at finer resolutions than

previous work. The systems evolved demonstrated the ability to take

advantage of geometric coordinates to inform the evolution of complex

bodies. However, this work was limited to rigid building blocks which

were actuated by a large number of hinge joints [1, 4, 3], or had no actu-

ation at all [2].

Fig. 2: (left) The scale and resolution of robots evolved by Sims in 1994; (middle)

The scale and resolution at which evolutionary robotics commonly occurs

today (from Lehman and Stanley in 2011); (right) The scale and resolu-

tion of robot fabrication techniques (from Lipson and Pollack, 2000).

Fig. 3: (left) Examples of high resolution, complex, natural-looking images

evolved with CPPN-NEAT that contain symmetry, repetition, and interest-

ing variation; (right) Examples of CPPN-encoded 3D shapes with these

same properties from (J. Clune and H. Lipson 2011).

Rigid structures limit the ability of robots to interact with their environ-

ments, especially when compared to the complex movements of struc-

tures in biology composed of muscle and connective tissue. These

structures, called muscular hydrostats, often display incredible flexibility

and strength; examples from biology include octopus arms or elephant

trunks [35]. While soft robots can be designed that provide outstanding

mobility, strength and reliability, the design process is complicated by

multiple competing and difficult-to-define objectives [35]. Evolutionary

algorithms excel at such problems, but have historically not been able

to scale to larger robotic designs. To demonstrate that evolution can de-

sign complex, soft-bodied robots, Hiller and Lipson created a soft-voxel

simulator (called VoxCAD) [11].
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They showed a preliminary result that CPPNs can produce interesting lo-

comotion morphologies, and that such designs can transfer to the real

world (Fig. 4) [13]. However, this work did not take advantage of the

NEAT algorithm, with its historical markings, speciation, crossover, and

complexification over time - which have been shown to greatly improve

the search process [33]. Additionally, these preliminary results consisted

of only three trials per treatment. Here we conduct a more in-depth ex-

ploration of the capabilities of CPPNs when evolving soft robots in VoxCad.

2 METHODS

2.1 CPPN-NEAT

CPPN-NEAT has been repeatedly described in detail [31, 9, 7, 10], so we

only briefly summarize it here. A compositional pattern-producing net-

work (CPPN) is similar to a neural network, but its nodes contain multiple

math functions (in this paper: sine, sigmoid, Gaussian, and linear). CPPNs

evolve according to the NEAT algorithm [31]. The CPPN produces geomet-

ric output patterns that are built up from the functions of these nodes.

Because the nodes have regular mathematical functions, the output pat-

terns tend to be regular (e.g. a Gaussian function can create symmetry

and a sine function can create repetition).

Fig. 4: A time-series example of a fabricated soft robot, which actuates with

cyclic 20% volumetric actuation in a pressure chamber (J. D. Hiller and

H. Lipson 2012). This proof-of-concept shows that evolved, soft-bodied

robots can be physically realized. Current work is investigating soft robot

actuation outside of a pressure chamber.

Fig. 5: A CPPN is iteratively queried for each voxel within a bounding area and

produces output values as a function of the coordinates of that voxel.

These outputs determine the presence of voxels and their material prop-

erties to specify a soft robot.

In this paper, each voxel has an x, y, and z coordinate that is input into

the network, along with the voxel’s distance from center (d). One out-

put of the network specifies whether any material is present, while the

maximum value of the 4 remaining output nodes (each representing an

individual material) specifies the type of material present at that loca-

tion (Fig. 5). This method of separating the presence of a phenotypic

component and its parameters into separate CPPN outputs has been

shown to improve performance [36]. Robots can be produced at any

desired resolution. If there are multiple disconnected patches, only the

most central patch is considered when producing the robot morphology.

2.2 VoxCAD

Fitness evaluations are performed in the VoxCAD soft-body simulator,

which is described in detail in Hiller and Lipson 2012 [14]. The simu-

lator efficiently models the statics, dynamics, and non-linear deforma-

tion of heterogeneous soft bodies. It also provides support for volumetric

actuation of individual voxels (analogous to expanding and contracting

muscles) or passive materials of varying stiffness (much like soft support

tissue or rigid bone). For visualization, we display each voxel, although a

smooth surface mesh could be added via the Marching Cubes algorithm

[23, 7].
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Fig. 6: CPPN-NEAT-encoded soft robots can scale to any resolution. Pictured here are soft robots sampled at voxel resolutions of 5×5×5 (left), 10×10×10 (center),

and 20×20×20 (right).

2.2.1 Materials

Following [12], there are two types of voxels: those that expand and

contract at a pre-specified frequency, and passive voxels with no intrinsic

actuation, which are either soft or hard. We expand upon [12] to include

multiple phases of actuation. Unless otherwise noted, four materials are

used: Green voxels undergo periodic volumetric actuations of 20%. Light

blue voxels are soft and passive, having no intrinsic actuation, with their

deformation caused solely by nearby voxels. Red voxels behave similarly

to green ones, but with counter-phase actuations. Dark blue voxels are

also passive, but are more stiff and resistant to deformation than light

blue voxels. In treatments with less than 4 materials, voxels are added in

the order above (e.g. two material treatments consist of green and light

blue voxels).

2.3 GAlib

The direct encoding is from GAlib—fully described in [37]—a popular

off-the-shelf genetic algorithm library from MIT. In the direct encoding

genome, each voxel has its own independent values representing its

presence and material outputs. The first value is binary, indicating

whether a voxel at that position exists. If the voxel exists, the highest

of the material property values determines the type of voxel. Thus, a

10×10×10 (“103”) voxel soft robot with 4 possible materials would have

a genome size of 103×5 = 5000 values.

2.4 Experimental Details

Treatments consist of 35 runs, each with a population size of 30, evolved

for 1000 generations. Unless otherwise noted, fitness is the difference in

the center of mass of the soft robot between initialization and the end of

10 actuation cycles. If any fitness penalties are assessed, they consist

of multiplying the above fitness metric by: 1− penalty metric
maximum penalty metric . For

example, if the penalty metric is the number of voxels, an organism with

400 non-empty voxels out of a possible 1000 would have its displacement

multiplied by 1− 400
1000 = 0.6 to produce its final fitness value. Other CPPN-

NEAT parameters are the same as in Clune and Lipson 2011 [7].

3 Results

Quantitative and qualitative analyses reveal that evolution in this system

is able to produce effective and interesting locomoting soft robots at dif-

ferent voxel resolutions and using different materials. We also discover

that imposing different environmental challenges in the form of penalty

functions provides an increased diversity of forms, suggesting the capa-

bility to adapt to various selective pressures.

Videos of soft robot locomotion are available at http://tinyurl.com/

EvolvingSoftRobots. So the reader may verify our subjective, qual-

itative assessments, we have permanently archived all evolved organ-

isms, data, source code, and parameter settings at the Dryad Digital

Repository.
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3.1 Direct vs. Generative Encoding

The CPPN-NEAT generative encoding far outperforms the direct encoding

(Figure 8), which is consistent with previous findings [9, 6]. The most

stark difference is in the regularity of the voxel distributions (compare

Figs. 1, 6, 12, 13 to Fig. 7). CPPN-NEAT soft robots consist of homoge-

neous patches of materials akin to tissues (e.g. one large patch of mus-

cle, another patch of bone, etc.). The direct encoding, on the other hand,

seems to randomly assign a material to each voxel. These homogeneous

tissue structures are beneficial because similar types of voxels can work

in a coordinated fashion to achieve the locomotion objective. For exam-

ple, all the voxels in one large section of green voxels will expand at the

same time, functioning as muscle tissue. This global coordination leads

to jumping, bounding, stepping, and many other behaviors. In the di-

rect encoding, each voxel works independently from–and often at odds

with–its neighboring voxels, preventing coordinated behaviors. Instead,

final organisms appear visually similar to those at initialization, and per-

formance barely improves across generations (Figure 8).

Another reason for the success of the CPPN-NEAT encoding is one of the

key properties of the NEAT algorithm: it starts with CPPN networks that

produce simple geometric voxel patterns and complexifies those patterns

over time [31].

3.2 Penalty Functions

To explore performance under different selective or environmental pres-

sures, we tested four different penalty regimes. All four require the soft

robot to move as far as possible, but have different restrictions. In one

environment, the soft robots are penalized for their number of voxels,

similar to an animal having to work harder to carry more weight. In an-

other, the soft robots are penalized for their amount of actuatable mate-

rial, analogous to the cost of expending energy to contract muscles. In

a third treatment, a penalty is assessed for the number of connections

(adjoining faces between voxels), akin to animals that live in warm en-

vironments and overheat if their surface area is small in comparison to

their volume. Finally, there is also the baseline treatment in which no

penalties are assessed.

While a cost for actuated voxels does perform significantly worse than

a setup with no cost (p = 1.9× 10−5 comparing final fitness values), all

treatments tend to perform similarly over evolutionary time (Fig. 9). This

rough equivalence suggests that the system has the ability to adapt

to different cost requirements without major reductions in performance.

However, drastically different types of body-plans and behaviors evolved

for the different fitness functions. There are differences in the propor-

tions of each material found in evolved organisms, indicating that evo-

lution utilizes different material distributions to fine tune morphologies

to various environments (Fig. 10). For example, when no penalty cost is

assessed, more voxels are present (p < 2× 10−13). When there is a cost

for the number of actuated voxels, but not for support tissue, evolution

uses more of these inert support materials (p < 0.02).

More revealing are the differences in behaviors. Fig. 11 categorizes loco-

motion strategies into several broad classes, and shows that different

task requirements favor different classes of these behaviors. To limit

subjectivity in the categorization process, we made clear category def-

initions, as is common in observational biology, and provide an online

archive of all organisms for reader evaluation (see Sec. 3).

Fig. 7: A representative example of a soft robot evolved with a direct encoding.

Note the lack of regularity and organization: there are few contiguous,

homogeneous patches of one type of voxel. Instead, the organism ap-

pears to be composed of randomly distributed voxels . The resolution is

the default 103.
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Fig. 8: The best individuals from 35 independent runs with a direct or generative

encoding. Note how the generative encoding sees large improvements

early in evolution, while it is exploring new locomotion types. It then set-

tles on specific types and gradually improves coordination, timing, etc.,

to exploit a given strategy. The direct encoding is unable to produce glob-

ally coordinated behavior to develop new locomotion strategies, resulting

in very minor improvements as it exploits its initial random forms. Here,

and in all figures, thick lines are medians ±95% bootstrapped confidence

intervals.

Fig. 12 displays the common locomotion strategies and Fig. 11 shows

how frequently they evolved. They are described in order of appearance

in Fig. 12. The L-Walker is named after the “L" shape its rectangular body

forms, and is distinguished by its blocky form and hinge-like pivot point

in the bend of the L. The Incher is named after its inchworm like behav-

ior, in which it pulls its back leg up to its front legs by arching its back,

then stretches out to flatten itself and reach its front legs forward. Its

morphology is distinguished by its sharp spine and diagonal separation

between actuatable materials. The Push-Pull is a fairly wide class of be-

haviors and is tied together by the soft robot’s powerful push with its (of-

ten large) hind leg to propel itself forward, which is usually coupled with

a twisting or tipping of its front limb/head to pull itself forward between

pushes. The head shape and thinner neck region are surprisingly com-
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Fig. 9: Performance is mostly unaffected by different selection pressures (i.e.

fitness functions).

mon features. Next, the Jitter (or Bouncer) moves by bouncing its (often

large) back section up and down, which pushes the creature forward. It

is distinguished by its long body and is often composed mainly of a single

actuatable material. The Jumper is similar in that it is often comprised of

a single actuatable material, but locomotes in an upright position, spring-

ing up into the air and using its weight to angle its jumping and falling in

a controlled fashion to move forward. The Wings is distinguished by its

unique vertical axis of rotation. It brings its arms (or wings) in front of it,

then pushes them down and out to the sides, propelling its body forward

with each flapping-like motion. Fig. 13 demonstrates other, less-common

behaviors that evolved.

These example locomotion strategies display the system’s ability to pro-

duce a diverse set of morphologies and behaviors, which likely stems

from its access to multiple types of materials. Our results suggest that

with even more materials, computational evolution could produce even

more sophisticated morphologies and behaviors. Note that different be-

haviors show up more frequently for different task settings (Fig. 11), sug-

gesting the ability of the system to fine tune to adapt to different selec-

tive pressures.
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Fig. 10: The amount of each material that evolved for different cost functions,

revealing the system’s ability to adapt material distributions to different

environments. For example, without a cost, evolution used more voxels

to produce actuation (p < 2× 10−13). With a cost for actuated voxels,

evolution tends to use more inert support tissue (p < 0.02).

3.3 Material Types

To meet its full potential, this system must scale to arbitrarily large num-

bers of materials and resolutions. We first explore its ability to compose

soft robots out of a range of materials by separately evolving soft robots

with increasing numbers of materials (in the order outlined in Sec. 2.2.1).

Adding a second, and then a third, material significantly improved perfor-

mance (Fig. 14, p < 2× 10−6), and adding a further hard, inert material

did not significantly hurt performance (Fig. 14, p = 0.68). This improved

performance suggests that CPPN-NEAT is capable of taking advantage of

the increase in morphological and behavioral options. This result is in-

teresting, as one might have expected a drop in performance associated

with the need to search in a higher dimensional space and coordinate

more materials.
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Fig. 11: Common behaviors evolved under different cost functions, summed

across all runs. These behaviors are described in Sec. 3.2 and visu-

alized in Fig. 12. Some behaviors occur more frequently under certain

selective regimes. For example, the L-Walker is more common without

a voxel cost, while Jitter, Jumper, and Wings do not evolve in any of the

no cost runs.

3.4 Resolution

This system also is capable of scaling to higher resolution renderings of

soft robots, involving increasing numbers of voxels. Fig. 6 shows exam-

ple morphologies evolved at each resolution. The generative encoding

tended to perform roughly the same regardless of resolution, although

the computational expense of simulating large numbers of voxels pre-

vented a rigorous investigation of the effect of resolution on performance.

Faster computers will enable such research and the evolution of higher-

resolution soft robots.
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Fig. 12: Time series of common soft robot behaviors as they move from left to

right across the image. From top to bottom, we refer to them as L-

Walker, Incher, Push-Pull, Jitter, Jumper, and Wings. Fig. 11 reports how

frequently they evolved.

Fig. 13: Time series of other evolved strategies. (top) Opposite leg stepping cre-

ates a traditional animal walk or trot. (middle) A trunk-like appendage

on the front of the robot helps to pull it forward. (bottom) A trot, quite

reminiscent of a galloping horse, demonstrates the inclusion of stiff ma-

terial to create bone-like support in longer appendages.
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Fig. 14: The number of materials also affects performance. With only one, only

simple behaviors like Jumping or Bouncing are possible, so performance

peaks early and fails to discover new gaits over time. Upon adding

a second material, more complex jumping and L-Walker behavior de-

velops. When a second actuatable material is added, most behavior

strategies from Fig. 12 become possible. Adding a stiff support material

broadens the range of possible gaits, but is only rarely taken advantage

of (such as in the bottom gallop of Fig. 13) and thus has a minimal im-

pact on overall performance. These observational assessments may be

verified, as all evolved organisms are available online (Sec. 3)

Fig. 15: An example of a soft robot that has evolved “teeth" to hook onto the

obstacle rings in its environment and propel itself across them.
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4 Discussion

The results show that life-like, complex, interesting morphologies and

behaviors are possible when we expand the design space of evolution-

ary robotics to include soft materials that behave similarly to organic

tissue or muscle, and search that design space with a powerful genera-

tive encoding like CPPN-NEAT. Our preliminary experiments suggest that

soft robotics at the voxel resolution will someday provide complex and

breathtaking demonstrations of lifelike artificial forms. Soft robotics will

also showcase the ability of evolutionary design because human intu-

itions and engineering fare poorly in such entangled, non-linear design

spaces.

We challenged multiple scientists to design fast, locomoting soft robots

by hand, using the same resolution and materials. While the sample

size is not sufficient to report hard data, all participants (both those with

and without engineering backgrounds) were unable to produce organ-

isms that scored higher than the evolved creatures. Participants noted

the surprising difficulty of producing efficient walkers with these four ma-

terials. This preliminary experiment supports the claim that systems like

the CPPN-NEAT generative encoding will increasingly highlight the effec-

tiveness of automated design relative to a human designer.

This work shows that the presence of soft materials alone is not sufficient

to provide interesting and efficient locomotion, as soft robots created

from the direct encoding performed poorly. Our results are consistent

with work evolving rigid-body robots that shows that generative encod-

ings outperform direct encodings for evolutionary robotics [17, 19, 9, 6].

Unfortunately, there have been few attempts to evolve robot morpholo-

gies with CPPN-NEAT [2], and there is no consensus in the field of a

proper measurement of “complexity", “interestingness", or “natural" ap-

pearance, so we cannot directly compare our soft robots to their rigid-

body counterparts. However, we hope that the reader will agree about

the potential of evolved soft robots upon viewing the creatures in action

[http://tinyurl.com/EvolvingSoftRobots].

5 Future Work

The ability to evolve complex and intricate forms lends itself naturally to

other questions in the field. Auerbach and Bongard have explored the

relationship between environment and morphology with rigid robots in

highly regular environments [4]. Because our system allows more flex-

ibility in robot morphology and behavior, it may shed additional, or dif-

ferent, light on the relationship between morphology, behavior, and the

environment. Preliminary results demonstrate the ability of this system

to produce morphologies well suited for obstacles in their environments

(Fig. 15).

While our research produced an impressive array of diverse forms, it

did use a target-based fitness objective, which can hinder search [38].

Switching to modern techniques for explicitly generating diversity, such

as the MOLE algorithm by Mouret and Clune [24, 8] or algorithms by

Lehman and Stanley [21], has the potential to create an incredibly com-

plex and diverse set of morphologies and behaviors.

Additionally, we are currently pursuing methods to minimize the need for

expensive simulations and to evolve specific material properties instead

of having a predefined palette of materials. These avenues are expected

to allow increased complexity and diversity in future studies.

The HyperNEAT algorithm [32], which utilizes CPPNs, has been shown to

be effective for evolving artificial neural network controllers for robots

[9, 20, 6]. The same encoding from this work could thus co-evolve robot

controllers and soft robot morphologies. Bongard and Pfeifer have argued

that such body-brain co-evolution is critical toward progress in evolution-

ary robotics and artificial intelligence [26].

Soft robots have shown promise in multiple areas of robotics, such as

gripping [15] or human-robot interaction [28]. The scale-invariant encod-

ing and soft actuation from this work has potential in these other areas

of soft robotics as well.

In order to compare different approaches, the field would benefit from

general, accepted definitions and quantitative measures of complexity,

impressiveness, and naturalness. Such metrics will enable more quanti-

tative analyses in future studies like this one.
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6 Conclusion

In this work we investigate the difficult-to-address question of why we as

a field have failed to substantially improve upon the work of Karl Sims

nearly two decades ago. We show that combining a powerful genera-

tive encoding based on principles of developmental biology with soft,

biologically-inspired materials produces a diverse array of interesting

morphologies and behaviors. The evolved organisms are qualitatively dif-

ferent from those evolved in previous research with more traditional rigid

materials and either direct, or overly regular, encodings. The CPPN-NEAT

encoding produces complex, life-like organisms with properties seen in

natural organisms, such as symmetry and repetition, with and without

variation. Further, it adapts to increased resolutions, numbers of avail-

able materials, and different environmental pressures by tailoring de-

signs to different selective pressures without substantial performance

degradation. Our results suggest that investigating soft robotics and

modern generative encodings may offer a path towards eventually pro-

ducing the next generation of impressive, computationally evolved crea-

tures to fill artificial worlds and showcase the power of evolutionary algo-

rithms.
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BEACON Center Teams Biologists with Computer Scientists and

Engineers to Study Evolutionary Processes and Solve Problems

In 2010, the U.S. National Science Foundation created BEACON Center

for the Study of Evolution in Action, as one of five new Science and Tech-

nology Centers funded with 5-year, $25 million grants (renewable for a

total of 10 years). In addition to our ”home,” Michigan State University,

BEACON includes four partner universities–—North Carolina A&T State

University, University of Idaho, University of Texas Austin and University

of Washington.

BEACON has grown rapidly, now having more than 300 participants, and

more than 100 additional affiliates. We conduct many activities designed

to bring evolutionary biologists together with computer scientists and

with engineers using evolutionary computation to solve real-world prob-

lems. Graduate courses for new BEACONites allow the evolutionary bi-

ologists to learn computational methods and the computer scientists to

learn about evolutionary biology. Then a follow-on course teams them to

study a problem of their choice, usually resulting in a publication.

Each week sees at least one BEACON-wide (videoconferenced 5-

university) seminar and additional meetings of many research teams,

some of them “area” meetings where 15 or 20 graduate students, post-

docs and faculty members make small presentations updating the team

on progress and getting ideas from the group on interesting questions

to pursue. The questions and suggestions are very likely to come from

students in other disciplines.

BEACON funds about 50 “seed” projects each year, helping to put to-

gether multi-disciplinary teams to initiate projects that may eventually

lead to externally funded research. Projects are often across disciplines

and across the partner universities. BEACON researchers are making

discoveries about evolution that are appearing frequently in such pres-

tigious journals as Science, Nature, and Proceedings of the National

Academy of Sciences.

What Can I Do with BEACON—as a Grad Student?
Postdoc? Faculty Member?

BEACON funds work within its five member universities, but can also

fund BEACON’s activities in projects with other universities in the U.S.

or abroad. BEACON has space to host visiting scholars from groups it

collaborates with, and can fund travel of BEACONites to work with their

partners. BEACON often hosts faculty members on sabbatical from an-

other university to work with someone in BEACON. There are about 40

postdoctoral research associates who are BEACON participants at any

time, some funded on BEACON seed projects. While most BEACON grad-

uate students are U.S. citizens or permanent residents, a limited number

of international graduate students also receive BEACON support as re-

search assistants. Many graduate students bring national fellowships to

BEACON universities or earn them while a part of BEACON.

BEACONites posing at the BEACON booth at GECCO 2014
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Search for the John R. Koza Endowed Chair in
Genetic Programming

BEACON Center for the Study of Evolution in Action will shortly begin a

search to fill the newly created John R. Koza Endowed Chair in Genetic

Programming. The gift from John Koza will bring a new faculty mem-

ber to BEACON and to some department in the College of Engineering

(which, at MSU, includes the Department of Computer Science and En-

gineering). Applications will be sought from faculty members anywhere

outside Michigan State University whose research has centered on ge-

netic programming.

Further Information

Interested faculty members should watch the BEACON website,

http://beacon-center.org/ for the announcement of the application pro-

cedures for the new chair, or may inquire of Erik Goodman, BEACON Di-

rector, at goodman@egr.msu.edu
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New Theses

Personalized Procedural Map Generation in Games
via Evolutionary Algorithms

Doctoral Thesis by William L. Raffe

In digital games, the map (sometimes referred to as the level) is the vir-

tual environment that outlines the boundaries of play, aids in establish-

ing rule systems, and supports the narrative. It also directly influences

the challenges that a player will experience and the pace of gameplay,

a property that has previously been linked to a player’s enjoyment of a

game [1]. In most industry leading games, creating maps is a lengthy

manual process conducted by highly trained teams of designers. How-

ever, for many decades procedural content generation (PCG) techniques

have posed as an alternative to provide players with a larger range of ex-

periences than would normally be possible. In recent years, PCG has even

been proposed as a means of tailoring game content to meet the prefer-

ences and skills of a specific player, in what has been termed Experience-

driven PCG (EDPCG) [2].

This thesis contributes to the growing EDPCG research field with a fo-

cus on personalizing maps. Here, the EDPCG techniques are used within

a Search-based PCG (SBPCG) [3] framework, utilizing evolutionary algo-

rithms to search for maps that are appropriate for an individual player.

Evolution is a common strategy in SBPCG as it provides a logical means

of evaluating map candidates and iteratively improving them over multi-

ple generations of recombination and mutation. Furthermore, this thesis

investigates a decomposed approach to map generation, using separate

evolutionary cycles, genetic representations, and fitness evaluators for

two aspects of a map: the geometry and content layout. The geometry

of a map defines the boundaries of play and the location of static virtual

objects. Meanwhile, the content layout describes the location and quan-

tity of interactive game assets, such as enemies and pick-ups. Both of

these components affect a player’s experience to varying degrees in dif-

ferent game genres but are typically related in that the content layout

must be within the geometry.

Finally, as the maps should be appropriate for an individual player, both

direct interactive evolutionary computing (IEC) and player preference

modeling are investigated as methods of collecting, interpreting, and uti-

lizing knowledge about the player’s desires.

The thesis starts with a brief foray into evolutionary terrains. This work

was conducted as an initial study into optimizing the most common type

of base map geometry and ignoring the content layout completely. Ter-

rains were generated by extracting uniform patches from user-provided

sample terrains, recombining them in a grid based genetic representa-

tion, and rendering a larger terrain by stitching the patches back together

again. The result was a content authoring tool that utilized IEC with both

parent selection and gene selection to expedite the terrain creation pro-

cess for novice designers [4].

However, the centrepiece of the thesis is an unsupervised public exper-

iment on an online map personalization solution. In this solution, the

geometry and content layout are linked through hierarchical optimiza-

tion; first optimizing the geometry of a map and then using that as input

to the content layout optimization. The geometry is represented as a

custom made fixed n-ary tree that connects pre-made room and corridor

templates together into a constrained tree structure and is again evalu-

ated through IEC. The density of content within each room (node) of the

geometry tree is then calculated by using the tree coordinates of each

node as input to a Compositional Pattern-Producing Network (CPPN) [5]

and translating the output as quantities of the various enemies and pick-

ups within that room. IEC was deemed inappropriate as a fitness evalua-

tion mechanism here because a content layout candidate could not be as

easily visualized to the player. Instead, for each player-selected geome-

try, roughly 200 generations of NeuroEvolution of Augmenting Topologies

(NEAT) [6] (with 50 CPPN candidates in each generation) are evaluated

through a learned per-player preference model that is based around the

paradigm of model-based and content-based recommender system (RS).
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This RS player model requires that players provide a single rating value

on how much they enjoyed a map after they play it. This rating is then

combined with extracted map features to train a Naive Bayes classifier.

That classifier then predicts the probability that a player will enjoy a map

that results from a CPPN candidate and thus CPPN-NEAT is being used to

reduce the number of RS evaluations need to provide a good recommen-

dation. Further details of the system are presented in an initial report

that analyzes the experiences of three sample players [7].

In summary, the primary contributions of this thesis are: 1) the use of de-

composed optimization to personalize the geometry and content layout

of a map in two separate, yet integrated, evolutionary processes; 2) two

geometry generation solutions, one for outdoor terrains and the other of

interior spaces, that both function by re-combining pre-made map seg-

ments and are controlled via IEC; 3) the application of CPPN-NEAT to the

map generation process, specifically for determining the density of con-

tent given a map location; 4) an initial exploration into using knowledge

from the RS field to create a player preference model to be used dur-

ing the fitness evaluation of a SBPCG system; 6) an example of rigorous

statistical analysis of a personalized PCG system deployed in an unsu-

pervised public experiment; and 5) the introduction of the learning trend

metrics, which give a clearer indication of RS performance in environ-

ments with noisy user data over traditional accuracy measurements.
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Games can be used as a challenging scenery for benchmarking methods

from computational intelligence since they provide dynamic and compet-

itive elements that are germane to real-world problems. This conference

brings together leading researchers and practitioners from academia and

industry to discuss recent advances and explore future directions in this

field.

The IEEE Conference on Computational Intelligence and Games is the

premier annual event for researchers applying computational and ar-

tificial intelligence techniques to games. The domain of the confer-

ence includes all sorts of CI/AI applied to all sorts of games, includ-

ing board games, video games and mathematical games. The yearly

event series started in 2005 as symposium, and is a conference since

2009. An overview over the past CIG conferences is available at

hrefhttp://www.ieee-cig.orgwww.ieee-cig.org, where you also find the

proceedings. CIG 2014 will be hosted in the Park Inn hotel in the city

center of Dortmund, a vibrant, technology-oriented city in the Ruhr area,

Germany’s largest metropolitan area with around 5 million people. The
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Mirjam Eladhari, University of Malta

Moshe Sipper, Ben-Gurion University of the Negev, Israel

Tutorials/Special Sessions Chair

Philip Hingston, Edith Cowan University, Perth, Australia

Competition Chair

Simon Lucas, University of Essex, UK

Keynote Chair

Gillian Smith, Northeastern University, Boston, USA

Proceedings Chair

Paolo Burelli, Aalborg University, Copenhagen, Denmark
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September 2014

PPSN 2014 – International Conference

on Parallel Problem Solving From Nature

September 13-17, 2014, Ljubljana, Slovenia

Homepage: http://ppsn2014.ijs.si

The 13th International Conference on Parallel Problem Solving from Na-

ture (PPSN XIII) will be organized by the Jožef Stefan Institute, Ljubljana,

Slovenia, and held at the Ljubljana Exhibition and Convention Centre

on September 13-17, 2014. The conference aims to bring together re-

searchers and practitioners in the field of Natural Computing. Natural

Computing is the study of computational systems that use ideas and get

inspiration from natural systems, including biological, ecological, phys-

ical, chemical, and social systems. It is a fast-growing interdisciplinary

field in which a range of techniques and methods are studied for deal-

ing with large, complex, and dynamic problems with various sources of

potential uncertainties.

Paper Presentation Following the well-established tradition of PPSN

conferences, all accepted papers will be presented during poster ses-

sions. Each session will contain several papers, and will begin by a ple-

nary quick overview of all papers in that session by a major researcher in

the field. Past experiences have shown that such presentation format led

to more interactions between participants and to deeper understanding

of the papers.

General Chair

Bogdan Filipič, Jožef Stefan Institute, Slovenia

Honorary Chair

Hans-Paul Schwefel (Tech. Universität Dortmund, DE)

Program Co-Chairs

Thomas Bartz-Beielstein, Cologne University of Applied Sciences, DE

Jürgen Branke, University of Warwick, UK

Jim Smith, University of the West of England, UK

Tutorials Chairs

Shih-Hsi "Alex" Liu, California State University, Fresno, USA

Marjan Mernik, University of Maribor, Slovenia

Workshop Chairs

Evert Haasdijk, VU University Amsterdam, The Netherlands

Tea Tušar, Jožef Stefan Institute, Slovenia

Publication Chair

Jurij Šilc, Jožef Stefan Institute, Slovenia

Local Organizer

Gregor Papa, Jožef Stefan Institute, Slovenia

January 2015

Learning and Intelligent OptimizatioN Conference (LION9)

January 12-16, 2015, Lille, France

Submission deadline: October 10, 2014

Homepage: http://www.lifl.fr/LION9/

The large variety of heuristic algorithms for hard optimization problems

raises numerous interesting and challenging issues. Practitioners are

confronted with the burden of selecting the most appropriate method,

in many cases through an expensive algorithm configuration and param-

eter tuning process, and subject to a steep learning curve. Scientists

seek theoretical insights and demand a sound experimental methodol-

ogy for evaluating algorithms and assessing strengths and weaknesses.

A necessary prerequisite for this effort is a clear separation between the

algorithm and the experimenter, who, in too many cases, is "in the loop"

as a crucial intelligent learning component. Both issues are related to

designing and engineering ways of "learning" about the performance of

different techniques, and ways of using past experience about the algo-

rithm behavior to improve performance in the future. Intelligent learning

schemes for mining the knowledge obtained from different runs or during

a single run can improve the algorithm development and design process

and simplify the applications of high-performance optimization methods.

Combinations of algorithms can further improve the robustness and per-

formance of the individual components provided that sufficient knowl-

edge of the relationship between problem instance characteristics and

algorithm performance is obtained.
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This meeting, which continues the successful series of LION events (see

LION 5 in Rome, LION 6 in Paris, LION 7 in Catania, and LION 8 in

Gainesville), is exploring the intersections and uncharted territories be-

tween machine learning, artificial intelligence, mathematical program-

ming and algorithms for hard optimization problems. The main purpose

of the event is to bring together experts from these areas to discuss new

ideas and methods, challenges and opportunities in various application

areas, general trends and specific developments.

Conference Organizers:

Clarisse Dhaenens

Laetitia Jourdan

Marie-Eléonore Marmion

Important Dates
Paper submission: October 10, 2014

Author Notification: November 25, 2014

Registration: December 17, 2014

Camera ready: January 3, 2015

Conference: January 12-16, 2015

FOGA XIII – Foundation of Genetic Algorithms

January 17-20, 2015, Aberystwyth, Wales, UK

Homepage: http://foga2015.dcs.aber.ac.uk/

Deadline: August 31, 2014

We invite submissions to the 2015 ACM/SIGEVO Foundations of Genetic

Algorithms XIII (FOGA 2015) which will be held 17–20 January 2015 in

Aberystwyth, Wales, UK.

FOGA is the premier event on the theoretical foundations of evolutionary

computation and all kinds of randomised search heuristics, including but

not limited to evolutionary algorithms, ant colony optimisation, artificial

immune systems and particle swarm optimisation. Accepted papers will

be published in post-conference proceedings by ACM Press.

The goal of FOGA is to advance the theoretical understanding of evolu-

tionary computation and all kinds of randomised search heuristics, pro-

mote theoretical work to the wider community and contribute to making

randomised search heuristics more useful in practice.

We particularly encourage submissions bridging theory and practice.

In addition to strict mathematical investigations, experimental studies

contributing towards the theoretical foundations of evolutionary com-

putation methods are also welcome. Topics include but are not limited

to runtime analysis; fitness landscapes and problem difficulty; single-

and multi-objective optimisation problems; stochastic and dynamic envi-

ronments; population dynamics; statistical approaches; self-adaptation;

black-box complexity; working principles of all kinds of randomised

search heuristics.

Organizers
Jun He Aberystwyth University, Wales, UK

Thomas Jansen Aberystwyth University, Wales, UK

Gabriela Ochoa University of Stirling, Scotland, UK

Christine Zarges University of Birmingham, England, UK

Important dates

Paper submission 31 August, 2014

Author notification 1 November, 2014

Standard registration 30 November, 2014

FOGA 2015 17–20 January, 2015

Post-proceedings deadline 28 February, 2015

April 2015

Evostar 2015 - EuroGP, EvoCOP, EvoBIO and EvoWorkshops

April 8-10, 2015, Copenhagen, Denmark

Submission deadline: November 15, 2014

Homepage: www.evostar.org

EvoStar comprises of five co-located conferences run each spring at dif-

ferent locations throughout Europe. These events arose out of workshops

originally developed by EvoNet, the Network of Excellence in Evolution-

ary Computing, established by the Information Societies Technology Pro-

gramme of the European Commission, and they represent a continuity of

research collaboration stretching back nearly 20 years.
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The five conferences include:

EuroGP 18th European Conference on Genetic Programming

EvoBIO 12th European Conference on Evolutionary Computation,

Machine Learning and Data Mining in Computational Biology

EvoCOP 15th European Conference on Evolutionary Computation in

Combinatorial Optimisation

EvoMUSART 4rd International Conference on Evolutionary and Bio-

logically Inspired Music, Sound, Art and Design

EvoApplications 16th European Conference on the Applications of

Evolutionary and bio-inspired Computation including the following

tracks

• EvoCOMNET Application of Nature-inspired Techniques for

Communication Networks and other Parallel and Distributed

Systems

• EvoCOMPLEX Applications of algorithms and complex systems

• EvoENERGY Evolutionary Algorithms in Energy Applications

• EvoFIN Track on Evolutionary Computation in Finance and Eco-

nomics

• EvoGAMES Bio-inspired Algorithms in Games

• EvoHOT Bio-Inspired Heuristics for Design Automation

• EvoIASP Evolutionary computation in image analysis, signal

processing and pattern recognition

• EvoINDUSTRY The application of Nature-Inspired Techniques in

industrial settings

• EvoNUM Bio-inspired algorithms for continuous parameter op-

timisation

• EvoPAR Parallel and distributed Infrastructures

• EvoRISK Computational Intelligence for Risk Management, Se-

curity and Defense Applications

• EvoROBOT Evolutionary Computation in Robotics

• EvoSTOC Evolutionary Algorithms in Stochastic and Dynamic

Environments

Featuring the latest in theoretical and applied research, EVO* topics in-

clude recent genetic programming challenges, evolutionary and other

meta-heuristic approaches for combinatorial optimisation, evolutionary

algorithms, machine learning and data mining techniques in the bio-

sciences, in numerical optimisation, in music and art domains, in image

analysis and signal processing, in hardware optimisation and in a wide

range of applications to scientific, industrial, financial and other real-

world problems.

EVO* Poster

You can download the EVO* poster advertisement in PDF format here

EVO* Call for Papers

You can access the call for papers of all the EVO* conferences here.

EVO* Coordinator:

Jennifer Willies, Napier University, United Kingdom

j.willies@napier.ac.uk

General Chairs:

Penousal Machado, Malcom Heywood, James McDermott, Gabriela

Ochoa, Francisco Chicano, Colin Johnson, Adrian Carballai, João Correia,

Antonio Mora

Local Chair:

Paolo Burelli, Aalborg University

Julian Togelius, IT University of Copenhagen

Publicity Chair:

Mauro Castelli & Paolo García Sánchez

Important Dates
Submission Deadline: 15 November 2014

Notification: 07 January 2015

Camera-ready: 21 January 2015

Conference: 8-10 April 2015
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May 2015

2015 IEEE Congress on Evolutionary Computation (CEC 2015)

May 25-28, 2015, Sendai, Japan

Homepage: http://sites.ieee.org/cec2015/

Deadline December 19, 2014

The annual IEEE CEC is one of the leading events in the field of evo-

lutionary computation. It covers all topics in evolutionary computation

including: Ant colony optimization, Artificial immune systems, Coevolu-

tionary systems, Cultural algorithms, Differential evolution, Estimation

of distribution algorithms, Evolutionary programming, Evolution strate-

gies, Genetic algorithms, Genetic programming, Heuristics, metaheuris-

tics and hyper-heuristics, Interactive evolutionary computation, Learning

classifier systems, Memetic, multi-meme and hybrid algorithms, Molec-

ular and quantum computing, Multi-objective evolutionary algorithms,

Parallel and distributed algorithms, Particle swarm optimization, Theory

and Implementation, Adaptive dynamic programming and reinforcement

learning, Coevolution and collective behavior, Convergence, scalability

and complexity analysis, Evolutionary computation theory, Representa-

tion and operators, Self-adaptation in evolutionary computation, Opti-

mization, Numerical optimization, Discrete and combinatorial optimiza-

tion, Multiobjective optimization.

IEEE CEC 2015 will feature a world-class conference that aims to bring to-

gether researchers and practitioners in the field of evolutionary computa-

tion and computational intelligence from all around the globe. Technical

exchanges within the research community will encompass keynote lec-

tures, regular and special sessions, tutorials, and competitions as well as

poster presentations. In addition, participants will be treated to a series

of social functions, receptions, and networking to establish new connec-

tions and foster everlasting friendship among fellow counterparts.

Important Dates:

Competition Proposals Due: September 26, 2014

Tutorial Proposals Due: January 9, 2015

Special Session Proposals Due: October 31, 2014

Paper Submission Due: December 19, 2014

More information can be found at: http://sites.ieee.org/cec2015/.
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About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate to an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.
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