
in this issue

Evolutionary
Game Design

Cameron Browne

DEAP - Enabling
Nimbler Evolutions

François-Michel De Rainville

Félix-Antoine Fortin

Marc-André Gardner

Marc Parizeau

Christian Gagné

GECCO-2013
competition report

calls & calendar

SIGEVOlution
newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation

Volume 6
Issue 2

EDITORIAL

Editorial

W
elcome to the new issue of SIGEVOlution. More than a year has passed from the last

editorial and I apologize for the huge delay. I hope you missed "us" since "we" missed

you too! Like a phoenix, the mythological long-lived bird that is cyclically regenerated or

reborn, here we are again with a new juicy menu. We start with an article by 2013 Humies

gold medalist Cameron Browne about LUDI, his framework for evolutionary game design that created

Yavalath, the world’s first fully computer-generated board game to be commercially released. Then, we

have an article about the new Python framework for distributed evolution (DEAP) developed by Francois-

Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau, and Christian Gagné. Our

final dessert is a report of the 2013 GECCO competitions that received the astonishing number of 32

submissions.

Unfortunately, I missed the GECCO deadline this year. If you missed it too don’t despair since there are still

16 (!) workshops waiting for your contribution (the deadline is March 28, 2014) and several competitions

you can join.

As always, I owe my thanks to the many people who helped me in this: Cameron Browne, Francois-Michel

De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau, Christian Gagné, Daniele Loiacono,

Cristiana Bolchini, Viola Schiaffonati, Francesco Amigoni, Franz Rothlauf.

The cover photo is a shot of a deluxe Yavalath board by Néstor Romeral Andrés.

See you next year! (just kidding)

Pier Luca

February 18, 2014

SIGEVOlution Volume 6, Issue 2

Newsletter of the ACM Special Interest Group

on Genetic and Evolutionary Computation.

SIGEVO Officers

Wolfgang Banzhaf, Chair

Una-May O’Reilly, Vice Chair

Marc Schoenauer, Secretary

Franz Rothlauf, Treasurer

SIGEVOlution Editor in Chief

Pier Luca Lanzi

Contributors to this Issue

Cameron Browne

François-Michel De Rainville

Félix-Antoine Fortin

Marc-André Gardner

Marc Parizeau

Christian Gagné

Contents

Evolutionary Game Design 3

Cameron Browne

DEAP - Enabling Nimbler Evolutions 17

François-Michel De Rainville

Félix-Antoine Fortin

Marc-André Gardner

Marc Parizeau

Christian Gagné

GECCO-2013 Competition Report 27

Daniele Loiacono

GECCO-2014 "Humies" Awards 29

Calls and Calendar 33

About the Newsletter 38

ISSN: 1931-8499SIGEVOlution Volume 6, Issue 2

http://en.wikipedia.org/wiki/Phoenix_(mythology)

General Chair
Bogdan Filipič, Jožef Stefan Institute, Slovenia

Honorary Chair
Hans-Paul Schwefel, Dortmund UT, Germany

Program Chairs
Thomas Bartz-Beielstein

 Cologne University of Applied Sciences, Germany
Jürgen Branke, University of Warwick, UK
Jim Smith, University of the West of England, UK

Tutorial Chairs
Shih-Hsi "Alex" Liu, California State University, Fresno, USA
Marjan Mernik, University of Maribor, Slovenia

Workshop Chairs
Evert Haasdijk, VU University Amsterdam, The Netherlands
Tea Tušar, Jožef Stefan Institute, Slovenia

Publications Chair
Jurij Šilc, Jožef Stefan Institute, Slovenia

Local Organizing Committee Chair
Gregor Papa, Jožef Stefan Institute, Slovenia

AIMS AND SCOPE
The 13th International Conference on Parallel Problem Solving from Nature (PPSN XIII) will be
organized by the Jožef Stefan Institute, Ljubljana, Slovenia, and held at the Ljubljana Exhibition
and Convention Centre on September 13-17, 2014. The conference aims to bring together
researchers and practitioners in the field of Natural Computing. Natural Computing is the study of
computational systems that use ideas and get inspiration from natural systems, including
biological, ecological, physical, chemical, and social systems. It is a fast-growing interdisciplinary
field in which a range of techniques and methods are studied for dealing with large, complex, and
dynamic problems with various sources of potential uncertainties.

PAPER PRESENTATION
Following the well-established tradition of PPSN conferences, all accepted papers will be
presented during poster sessions. Each session will contain several papers, and will begin by a
plenary quick overview of all papers in that session by a major researcher in the field. Past
experiences have shown that such presentation format led to more interactions between
participants and to deeper understanding of the papers. All accepted papers will be published in
the proceedings as a volume of the Lecture Notes in Computer Science (LNCS) Springer series. The
format should follow the LNCS style (http://www.springer.de/comp/lncs/authors.html).
Prospective authors are invited to contribute their high-quality original results in the field of
Natural Computing as papers of no more than 10 pages.

CONTACTS

Email: ppsn2014@ijs.si
Twitter: twitter.com/ppsn2014

IMPORTANT DATES
March 17, 2014 Paper submission
May 19, 2014 Author notification
June 2, 2014 Camera-ready paper submission
June 4, 2014 Early registration
September 13-17, 2014 Conferencee

13th International Conference on
Parallel Problem Solving from Nature

September 13-17, 2014
Ljubljana, Slovenia
http://ppsn2014.ijs.si

Evolutionary Game Design
Automated Game Design Comes of Age

Cameron Browne

T
he "Humies" awards are an annual competition held in con-

junction with the Genetic and Evolutionary Computation Con-

ference (GECCO), in which cash prizes totalling $10,000 are

awarded to the most human-competitive results produced by

any form of evolutionary computation published in the previous year.

This article describes the gold medal-winning entry from the 2012 "Hu-

mies" competition, based on the LUDI system for playing, evaluating

and creating new board games. LUDI was able to demonstrate human-

competitive results in evolving novel board games that have gone on to

be commercially published, one of which, Yavalath, has been ranked in

the top 2.5% of abstract board games ever invented. Further evidence

of human-competitiveness was demonstrated in the evolved games im-

plicitly capturing several principles of good game design, outperforming

human designers in at least one case, and going on to inspire a new sub-

genre of games.

Introduction

General game playing (GGP) involves the development of systems for

playing a range of games well rather than any single game expertly. GGP

was first proposed in the late 1960s [12] but has only recently emerged as

a field in its own right, mainly due to the annual AAAI GGP competitions
[7], as AI researchers see the benefits of such general approaches to

machine intelligence. General game players are improving each year

in strength and generality, but an important aspect of the games being

modelled has largely gone ignored, namely how good are they? In 1992,

Barney Pell observed [11]:

"If we could develop a program which, upon consideration of

a particular game, declared the game to be uninteresting, this

would seem to be a true sign of intelligence! So when this be-

comes an issue, we will know that the field has certainly ma-

tured."

In 2007 I developed a program called LUDI that was not just a general

game player, but a complete general game system (GGS) for playing,

evaluating and generating new games. LUDI answered Pell’s challenge

by demonstrating how combinatorial games could be automatically mea-

sured for their potential to interest human players, but also went a step

further to show how this information could be used to direct the evolu-

tionary search for new high quality games. Two of the games produced by

LUDI have since been commercially published, and one of them, Yavalath,

has proved to be particularly successful with players. These were the first

– and to my knowledge remain the only – examples of fully computer-

generated games to be commercially published.

LUDI, and the games it produced, won the gold medal at the 2012 Genetic

and Evolutionary Computation Conference (GECCO) “Humies” awards,

for human-competitive results in evolutionary computation [9]. This arti-

cle is an expanded version of the winning presentation made at the 9th

annual “Humies” competition, held at GECCO in Philadelphia in July 2012.

It briefly describes the inner workings of LUDI, how it evaluates and cre-

ates new games, describes its two best games in detail, then concludes

by summarising the evidence for human-competitiveness.

SIGEVOlution Volume 6, Issue 2 3

EDITORIAL

Representation

Games are modelled as rule trees and described as LISP-like symbolic ex-

pressions or s-expressions. For examples, Figures 1 and 2 show the rule

tree and corresponding s-expression for the game of Tic-Tac-Toe. This

representation has the advantage of being high-level, structured and

human-readable; the average player should be able to read through this

set of rules and at least recognise this game (once i-nbors is understood

to mean "diagonal neighbors"). This LUDI game description language

(GDL) was primarily intended to model how human designers might con-

ceptualise games, as structured relationships of rules.

An advantage of using a grammar-based approach is that the resulting

rule trees possess an inherent modularity. For example, all rules per-

taining to the board are contained in the subtree below the board node,

all movement rules pertaining to a particular piece are contained in the

subtree below that piece’s defining node, and so on. This makes it eas-

ier to swap movement rules between pieces, pieces between games,

board types between games, and so on, which are operations typically

employed by human designers in devising new games.

Operation

New games are created by a straightforward evolutionary approach, us-

ing standard genetic programming (GP) operators of crossover and mu-

tation [8] to mate pairs of games selected by roulette selection from a

population of individuals. Figure 3 shows a diagrammatic summary of

this process.

Game design is very much a process of innovation followed by refine-

ment, in which the designer has the great idea for a new mechanism,

then must find the optimal combination of rules to realise this mechanism

through a series of micro-iterations. The GP operators seem especially

well-suited to this task, as crossover provides innovation and mutation

provides refinement, although in practice there will be some overlap be-

tween the two. The game descriptions are strongly typed [10], so that

rules are only crossed over with compatible rules, which maintains mod-

ularity and facilitates the creation of meaningful rule combinations.

New game names are also automatically generated by the system, using

a Markov chain approach based on n-gram (letter combination) frequen-

cies found in a list of Tolkien-style character names.

game

Tic-Tac-Toe

players

White

Black

board

end

tiling

square

i-nbors

shape

square

size

3 3

All

win

in-a-row

3

Fig. 1: Rule tree for Tic-Tac-Toe.

Fig. 2: S-expression for Tic-Tac-Toe.

SIGEVOlution Volume 6, Issue 2 4

EDITORIAL

Crossover

Mutate

Rule Check
Well

Formed?

N

Y
Baptise

Too

Slow?

Y

NChoose
Policy

Drawish?

N

Y

Inbred?

N

Y

Evaluate

Bin

Population

Select

Fig. 3: Game design process.

SIGEVOlution Volume 6, Issue 2 5

EDITORIAL

Game Fitness

Evaluating games for their potential to interest human players is a much

more difficult task. This is where the bulk of the work was done on LUDI,

and represents its most important contribution. Boumanza [3] asks the

questions posed by most people who encounter the project:

"How can computers create interesting games? What makes a

game interesting and how can a machine decide if a game is of

interest to human players?"

Game fitness is measured through self-play trials, as the true nature of

a game cannot be observed in its rules alone, but emerges during play.

LUDI plays each game between two AI opponents a number of times, and

measures certain trends observed during play. For example, Figure 4 is

a lead plot over the course of a game, in which the bold (red) line shows

the estimated difference in board position between the eventual winner

(White) and loser (Black) with each move. The board position estimates

are provided by the AI players as a by-product of the search.

The aesthetic criterion being measured in Figure 4 is drama, which is the

degree to which the player currently in a negative (losing) position can

turn the tables to win the game. Such drama keeps a game interesting for

both players. The example in Figure 4 shows quite a dramatic game, in

which White spends a number of moves in a relatively negative position,

before eventually retaking the lead to win. 57 such aesthetic criteria were

defined for LUDI, of which 17 were found to give a strong correlation with

human player rankings for a database of 79 source games [5].

Results

Starting with this database of 79 source games, the evolutionary process

was run over approximately three weeks to yield 1,379 evolved games of

varying quality. 19 of these games were deemed to be playable, accord-

ing to a simple playability filter based on:

1. Completion: Games produced a result more often than not.

2. Bias/balance: Games did not unduly favour either player or colour.

3. Game length: Games were not too short nor too long.

0 1() 2() 3() 4() 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

+1

0

-1

Fig. 4: Lead plot showing drama.

Fig. 5: Estimated fitness versus player ranking.

SIGEVOlution Volume 6, Issue 2 6

EDITORIAL

Game length, in particular, proved to be a surprisingly effective indicator

of flawed games, as also found by Althöfer [2], filtering out over 95% of

evolved individuals with minimal false positives. It is a powerful metric

as it detects trivial games that end in a few moves, indecisive games that

go on for too long, and impossible games whose winning conditions can

never be achieved.

Figure 5 shows the reasonably strong correlation between the estimated

aesthetic score for each game, and its actual ranking by human play

testers. The aesthetic criteria proved useful in predicting an evolved

game’s potential to interest human players.

Yavalath

Yavalath is the most successful game evolved by LUDI. It was ranked #4

by the system and #2 by human play testers. The complete rule set is

given in Figure 6.

Players take turns placing a piece of the their colour on the board (Fig-

ure 7), and win by making a line of four of their colour, but lose by making

a line of three of their colour beforehand. The rules are not much more

complex than those for Tic-Tac-Toe, but this apparent simplicity hides a

surprising emergent twist that subverts the familiar N-in-a-row genre and

makes Yavalath quite an interesting game.

Analysis

Consider the situation shown in Figure 8, with White to play. If White plays

move 1 as shown (Figure 9), then Black is forced to reply with blocking

move 2, which unfortunately for them creates a line of three to lose the

game; White’s move 1 forced a win. This mechanism of forcing moves

constitutes the heart of game, and allows clever sequences of play that

can manipulate the opponent into a disadvantageous and eventually los-

ing position.

The situation shown in Figure 10 is a more complex puzzle, with White

to play. Note that if Black is allowed to play at either move X then White

is forced to reply in the other cell X and complete a losing line of three.

White therefore must play a forcing move next turn to stop Black doing

this. There are three forcing moves available to White, marked a, b and c.

Figure 11 shows White’s only winning sequence from move c; any other

move (or set of moves) would lose this game.

Fig. 6: Evolved rules for Yavalath.

Fig. 7: Yavalath board (starts empty).

SIGEVOlution Volume 6, Issue 2 7

EDITORIAL

Fig. 8: White to play.

Fig. 9: White move 1 forces losing reply 2.

Fig. 10: White to play.

Fig. 11: White’s only winning sequence.

SIGEVOlution Volume 6, Issue 2 8

EDITORIAL

Yavalath therefore allows the creation of interesting puzzles in general

play, one of Thompson’s [15] requirements for an abstract board game

to have lasting interest for players.

Such complex behaviour emerging from simple rules is what defines the

best abstract board games – a minute to learn, a lifetime to master – and

is exactly the sort of phenomenon we were hoping to see emerge from

the evolutionary search.

Quality

A requirement of the "Humies" competition is that submissions must sat-

isfy an "arms length" standard. That is, the quality of the results must

be demonstrated through an independent source, other than the opinion

of the author or their colleagues, such as publication in a peer-reviewed

journal or entry in an expert database. This posed a bit of a problem for

LUDI and its output, as games are an artistic as much as a scientific re-

sult (even though they can still be measured empirically), and there is no

internationally recognised panel of experts for game design. However,

the online board game database BoardGameGeek (BGG) provides a use-

ful source of peer review, and the equivalent of an expert database in

this field.

Board Game Geek (BGG) [1] is the world’s foremost online community of

board game players, designers and publishers. It has over 400,000 mem-

bers including many of the world’s best game designers and players, and

its database lists every known board game (over 45,000). Games sub-

mitted to BGG must pass a review and moderation process before be-

ing added to the database, and its peer voting mechanism for rating

database entries is hidden from casual users, which encourages edu-

cated assessments, and is carefully policed. It is generally acknowledged

that the BGG ranking for a game is a fair assessment of its value in the

eyes of players.

Yavalath was added to the BGG database in the "Abstract Games" cate-

gory, which contains more than 4,300 games. It achieved a high ranking

of #99 in this category in August 2011, placing it in the top 2.5% of ab-

stract board games ever invented, according to the BGG community.

Fig. 12: The Yavalath Deluxe set from nestorgames.

To put this in context, Yavalath was ranked below Chess and Go, but

above many well known and respected games, several of which have

won awards and been recognised as games of high quality:

#3 Go

#45 Chess

#99 Yavalath

#112 Backgammon

#140 Abalone

#267 Othello

#539 Mastermind

#546 Chinese Checkers

Shortly before giving the “Humies" presentation, I had the humbling re-

alisation that Yavalath is also ranked above all of my own more than 60

games on BGG. Players appear to prefer my programme’s games to my

own.

SIGEVOlution Volume 6, Issue 2 9

EDITORIAL

Publication

Yavalath was published in 2009 by independent games publisher

nestorgames [13]. It was the first game in their catalogue, which has

grown to almost 100 games in three years, and remains a flagship prod-

uct. Figure 12 shows the Yavalath Deluxe set, released as a special edi-

tion for nestorgames’ third anniversary, worth around $200.

Note that this picture shows the three-player version of the game;

Yavalath is one of the few board games that plays equally well with two

or three players, another attractive marketing point.

Yavalath is still the first game that nestorgames owner Néstor Romeral

Andrés teaches to new players at exhibitions and conventions, as the

simple rules mean that players can start playing it immediately, but the

emergent twist surprises them and makes the game addictive as they

replay it to explore this twist more fully. There is an "aha!" moment when

players discover the forced move mechanism – Romeral Andrés reports

that most players do actually say "aha!" at this point (or the Spanish

equivalent "anda!") – and it was satisfying to hear more than one audible

"aha!" coming from the "Humies" audience when describing the game.

Romeral Andrés points out that players are generally surprised when it

is revealed that Yavalath was designed by computer. The popular con-

sensus among players appears to be that they would have expected a

computer-generated game to be more complex and difficult to play, and

less fun.

Inspiration

Immediately following the public release of Yavalath, an experienced

game designer announced that he had devised a similar "5 but not 4"

mechanism on the (square) Go board, but never got it working satisfac-

torily and had shelved the idea years ago. While he quipped that the idea

had come from his "human brain", it was LUDI’s automated search that

found a rule set to successfully realise the "N but not N-1" mechanism.

In terms of the game design process, both had made the innovation, but

only LUDI had successfully refined it.

Yavalath has since inspired the invention of a number of further games,

including: Tritt, Cross, Tailath, Morro, Coffee, Epsilon and Manalath. The

basic "N but not N-1" mechanism has been applied to other game types,

including:

1. Form a group of size N but not size N-1.

2. Connect N sides of the board but not N-1 sides.

The basic Yavalath mechanism has therefore been extrapolated to a more

general "N but not sub(N)" rule in a number of contexts, constituting a

new sub-genre of games (tentatively called subset games).

Game Design Principles

In creating Yavalath, LUDI implicitly captured some fundamental princi-

ples of good game design used by human designers, albeit unintention-

ally. These principles were not programmed into LUDI, but emerged as a

serendipitous by-product of the evolutionary search.

Familiarity with Novelty. Players generally prefer games with famil-

iar rules and short learning curves, but will quickly become bored with

games that do not offer something new. Achieving these competing ob-

jectives of familiarity and novelty in a single game is a significant chal-

lenge for designers, but LUDI did exactly that with Yavalath. Further, the

fact that the winning and losing conditions both use the same (N-in-a-row)

basis means that players need to process less information to understand

and remember the rules, maximising the game’s clarity as they mentally

plan their moves.

Rule Tension. The inclusion of rules that create strategic conflict against

other rules is a common mechanism for increasing tension in a game, as

players must carefully weigh the benefits of a given move with any detri-

mental side-effects. Yavalath’s "4 but not 3" mechanism is an obvious

manifestation of this principle, as lines of a certain length are infinitely

beneficial while lines of another length are fatal; players cannot simply

extend their best line each turn, but must find the optimal move in the

face of these multiple and competing objectives.

SIGEVOlution Volume 6, Issue 2 10

EDITORIAL

Ndengrod (aka Pentalath)

Ndengrod, the second most successful game evolved by LUDI, was also

published by nestorgames in 2009 [14]. Its name was changed to Penta-

lath for release; just like the automatically generated games, some au-

tomatically generated names did not work as well as others. Ndengrod

was ranked the #1 evolved game by both the system and human play

testers, but remains less popular than Yavalath due to its more complex

rule set (Figure 13). Players take turns placing a piece of the their colour

on the board, capturing any surrounded enemy groups (as per Go), and

win by making a line of five pieces of their colour. Ndengrod has a much

steeper learning curve than Yavalath. Firstly, players must come to grips

with the surround capture rule, and secondly, it can take several games

before a player begins to grasp the underlying strategy, as Ndengrod is

surprisingly subtle and deep.

Analysis

Figure 15 shows a typical passage of play, by way of example. The posi-

tion on the left shows Black to play and attempt to save their threatened

group. If Black chases the only available freedom with moves 1, 3 and

5, then White can make the replies shown (2 and 4) to force a ladder

down the side (middle). A Go player might do this with the intention of

running the threatened black group into the bottom edge to capture it.

However, Black has now made a line of four pieces, so White is forced to

immediately block this line with move 6 (right). Black is able to escape

the ladder with move 7, and in fact now has the upper hand, as capturing

the stray white piece 6 and completing their line of five should not be too

difficult. White made a serious mistake in following this ladder.

Ndengrod is actually very much a connection game [4] beneath the sur-

face. It is most important to establish safe (two-eyed) groups and con-

nect them together across the board, while the 5-in-a-row goal is more

of a local tactical concern during this process. It is possible to win the

game at any stage by forcing 5-in-a-row against a careless opponent, but

in games between experienced and careful players the board will tend to

fill up before this happens. In such cases, the game takes on a territorial

aspect and will typically be won by the player with the strongest groups

that contain the most freedoms (eyes).

Fig. 13: Evolved rules for Ndengrod.

Fig. 14: Ndengrod board (starts empty).

SIGEVOlution Volume 6, Issue 2 11

EDITORIAL

2

4

1

3

5 a

b

a

b 6

7

Fig. 15: White forces a ladder but is forced to abandon it, giving Black the upper hand.

The fact that players may not pass, unlike Go, introduces a beautiful self-

correcting mechanism to the end game. Players will eventually be forced

to fill in their own eyes if not able to play elsewhere, making it inevitable

that at least one capture will occur before the board fills up completely,

following which the opponent will usually win the game quickly. Players

must prepare for this end game well before it occurs, and ensure that

they can outlast their opponent in such an eye-filling race.

Game Design Principles

In creating Ndengrod, LUDI also implicitly captured some principles of

good game design used by human designers, but in this case more spe-

cific to the geometry of the game.

Use the Geometry (Board Shape). Ndengrod was originally specified

by LUDI on the trapezoidal board shown in Figure 14, but was remapped

to the hexagonal Yavalath board for publication, so that both games could

be released as a set. The name Ndengrod was also changed to Pentalath

for publication.

However, after years of testing and player feedback, it became clear that

Ndengrod is a better game on its original trapezoidal board, for a number

of reasons:

1. The presence of both acute and obtuse board corners allows greater

variety in tactical play.

2. The longer board rows allow greater scope for 5-in-a-row threats.

3. The board is less symmetric, being wider than high, encouraging

greater variety in tactical play.

4. The board is larger (70 vs 61 cells) allowing more complex global

connection battles.

Ndengrod has now been re-released on the original trapezoidal board
[14]. LUDI had found what appears to be the optimal geometry for this

game, which was only worsened by our subsequent modifications; LUDI

knew better than us in this case.

SIGEVOlution Volume 6, Issue 2 12

EDITORIAL

Use the Geometry (No Ko on Hexagonal Grids). The ko rule, used

in Go, specifies that players cannot make a move that would repeat the

previous board position. For example, Figure 16 shows a Go position in

which White captures a black piece, but Black is not allowed to immedi-

ately recapture at point X as this would repeat the previous board state.

The ko rule is essential in Go for avoiding infinite cycles of capture and

recapture.

One of the mysteries of Ndengrod is why the game works so well without

a ko rule, even though it features Go-like surround capture. This question

remained unanswered until recently, when it was (re)discovered that ko

situations simply don’t occur on the hexagonal grid, due to its geometry
[6]. For example, Figure 17 shows the analogous position on the hexago-

nal grid, in which White captures a single surrounded black piece, but in

this case Black cannot possibly recapture it on the next move. This is be-

cause on the square grid groups are simply (i.e. orthogonally) connected

whereas the surrounding enemy set need not be, but on the hexagonal

grid both the group and its surrounding enemy set are simply connected.

LUDI had implicitly captured this knowledge that the ko rule is not needed

on the hexagonal grid, in its choice of rules for Ndengrod. This resulted

in a simpler, more efficient rule set, and taught me a fundamental fact

regarding Go-like game design that I did not previously know. In creat-

ing Ndengrod, LUDI had devised one of the very few Go-like games that

actually works well on the hexagonal grid.

Human Competitiveness

Entries in the "Humies" competition are judged for human competitive-

ness according to eight key criteria [9]. I claimed that LUDI and the games

it produced satisfied criteria C), D) and F), as follows:

C) The result is equal to or better than a result that was placed into

a database or archive of results maintained by an internationally

recognized panel of scientific experts. Yavalath was placed in the

BGG database and ranked in the top 2.5% of abstract board games

ever invented, placing it above many famous and popular games.

D) The result is publishable in its own right as a new scientific result

— independent of the fact that the result was mechanically cre-

ated. Yavalath and Ndengrod have been commercially published

for over three years, and Yavalath remains a flagship product for

nestorgames.

F) The result is equal to or better than a result that was considered an

achievement in its field at the time it was first discovered. Yavalath

has been ranked on BGG above many popular games that have won

awards and were considered achievements at their time of release,

including Othello, Mastermind, Abalone, and others.

Cases could have been made for other criteria. For example, Yavalath

and Ndengrod could be patented (criterion A) although this would not be

cost effective, and LUDI did not “solve a problem of indisputable difficulty

in its field” (criterion G) so much as find a range of good solutions for that

problem (there is no single “best” game). Such claims would have been

tenuous and were not made.

Conclusion

In summary, LUDI was able to:

Evolve new and interesting games.

Inspire a new sub-genre of games.

Find good solutions to problems encountered by human designers.

Implicitly capture several principles of good game design.

Yield insights into game design that have surprised me.

Produce a game that has proven more popular among players than

my own games.

These results apparently satisfied the criteria for human competitive-

ness, and impressed the "Humies" judges sufficiently to win the gold

medal. I believe that a large part of this success was due to the novel

and creative nature of the problem; game design is an art as much

as a science, and a very human craft. Modelling the underlying prin-

ciples computationally is a very difficult task, and one that had not

been previously achieved to the level demonstrated by LUDI and its cre-

ations. In future, we can expect to see a greater number of increasingly

human-competitive results in game design and other creative tasks, as

researchers increasingly turn their attention to procedural content gen-

eration [16] in such areas.

SIGEVOlution Volume 6, Issue 2 13

EDITORIAL

Fig. 16: The ko rule forbids Black from immediately recapturing in Go.

c

Fig. 17: The ko rule is not needed on the hexagonal grid.

SIGEVOlution Volume 6, Issue 2 14

EDITORIAL

References

[1] S. Alden (2000) "BoardGameGeek",

http://www.boardgamegeek.com

[2] I. Althöfer (2003) Computer-aided game inventing, Technical Report,

Friedrich Schiller Universität Jena.

[3] A. Boumanza (2012) "Cameron Browne: Evolutionary Game De-

sign", Genetic Programming and Evolvable Machines, 13:3, 407-9.

[4] C. Browne (2005) Connection Games: Variations on a Theme, AK

Peters, Massachusetts.

[5] C. Browne (2011) Evolutionary Game Design, Springer, Berlin.

[6] C. Browne (2012) "Go Without Ko on Hexagonal Grids", ICGA Journal,

35:1, 37-40.

[7] M. Genesereth, N. Love and B. Pell (2005) “General Game Playing:

Overview of the AAAI Competition”, AI Magazine, 26:2, 62-72.

[8] J. Koza (1992) Genetic Programming, MIT Press, Cambridge.

[9] J. Koza (2012) “The Annual ‘Humies’ Awards – 2004-2012”, http:

//www.genetic-programming.org/combined.html

[10] D. Montana (1995) “Strongly typed genetic programming”, Journal

of Evolutionary Computation, 3:2, 199-230.

[11] B. Pell (1992) "METAGAME in symmetric Chess-like games", Heuris-

tic Programming in Artificial Intelligence 3, eds. H. Van den Kerik and

L. Allis, Ellis Horwood, Chichester.

[12] J. Pitrat (1968) “Realisation of a general game-playing program”,

IFIP Congress, 2, 1570–1574.

[13] N. Romeral Andrés (2012a) "Yavalath", http://www.

nestorgames.com/#yavalathdeluxe_detail

[14] N. Romeral Andrés (2012b) "Pentalath",

http://www.nestorgames.com/#pentalath_detail

[15] M. Thompson (2000) “Defining the abstract”, The Games Journal,

http://www.thegamesjournal.com

[16] J. Togelius, G. Yannakakis, K. Stanley and C. Browne (2011) “Search-

based Procedural Content Generation: A Taxonomy and Survey",

IEEE Trans. on Computational Intelligence and AI in Games, 3:3, 172-

186.

About the authors

Cameron Browne received the Ph.D. degree in Com-

puter Science from the Queensland University of Tech-

nology (QUT), Brisbane, Australia, in 2008, winning the

Dean’s Award for Outstanding Thesis. He was Canon

Research Australia’s Inventor of the Year for 1998, and

won the 2012 GECCO "Humies" gold medal for human-

competitive results in evolutionary computation. He is the author of

the books Hex Strategy, Connection Games and Evolutionary Game

Design, and is an Associate Editor of the IEEE Transactions on CI and

AI in Games (TCIAIG). Dr. Browne is currently a Research Fellow at

Goldsmiths College, University of London, and will soon be taking up

a position as Senior Research Fellow at the Queensland University of

Technology (QUT) in Brisbane, Australia.

Homepage: http://www.cameronius.com

Email: cameron.browne@btinternet.com

SIGEVOlution Volume 6, Issue 2 15

http://www.boardgamegeek.com
http://www.genetic-programming.org/combined.html
http://www.genetic-programming.org/combined.html
http://www.nestorgames.com/#yavalathdeluxe_detail
http://www.nestorgames.com/#yavalathdeluxe_detail
http://www.nestorgames.com/#pentalath_detail
http://www.thegamesjournal.com
http://www.cameronius.com
mailto:cameron.browne@btinternet.com

Evolutionary Game Design
Cameron Browne
Springer, 2011
ISBN 978-1-4471-2178-7

This book tells the story behind Yavalath, the world's first fully
computer-generated board game to be commercially released. It
is based on the PhD thesis "Automatic Generation and
Evaluation of Recombination Games", which describes the
development of a software system called LUDI able to play,
evaluate and evolve new games from existing rule sets. The
LUDI project demonstrated how board games can be empirically
measured for their potential to interest human players, and how
this knowledge can be used to direct the automated search for
new and interesting games.

Evolutionary Game Design goes further to place this project in
the broader context of computational creativity, and examine
questions raised by the creation of Yavalath and its subsequent
impact on game players and designers. This book was the main
piece of evidence behind the winning entry in the 2012 GECCO
"Humies" competition, for human-competitive results in
evolutionary computation.

"Evolutionary Game Design is a valuable contribution to
evolutionary computation and more generally to artificial
intelligence. It is engaging to read, easy to follow and lives up to
its promises. Furthermore, it delivers insights that should be
helpful to anyone interested in AI and games."

A. Boumanza (2012) on "Evolutionary Game Design" in
Genetic Programming and Evolvable Machines, 13:3, 407-9.

DEAP - Enabling Nimbler Evolutions

François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau, and Christian Gagné
Département de génie électrique et de génie informatique - Université Laval - Québec (Québec), Canada

D
EAP is a Distributed Evolutionary Algorithm (EA) framework

written in Python and designed to help researchers devel-

oping custom evolutionary algorithms. Its design philoso-

phy promotes explicit algorithms and transparent data struc-

tures, in contrast with most other evolutionary computation softwares

that tend to encapsulate standardized algorithms using the black-box ap-

proach. This philosophy sets it apart as a rapid prototyping framework for

testing of new ideas in EA research. An executable notebook version of

this paper is available at https://github.com/DEAP/notebooks.

Introduction

The DEAP framework [1; 2] is designed over the three following founding

principles:

1. Data structures are key to evolutionary computation. They must fa-

cilitate the implementation of algorithms and be easy to customize.

2. Operator selection and algorithm parameters have strong influences

on evolutions, while often being problem dependent. Users should

be able to parametrize every aspect of the algorithms with minimal

complexity.

3. EAs are usually embarrassingly parallel. Therefore, mechanisms

that implement distribution paradigms should be trivial to use.

With the help of its sister project SCOOP [3] and the power of the Python

programming language, DEAP implements these three principles in a

simple and elegant design.

⁃ Building blocks for testing ideas
⁃ Rapid prototyping
⁃ Fully transparent
⁃ Parallel ready
⁃ Exhaustively documented
⁃ Available at http://deap.gel.ulaval.ca

Highlights

Data Structures

A very important part of the success for designing any algorithm — if

not the most important — is choosing the appropriate data structures.

Freedom in type creation is fundamental in the process of designing evo-

lutionary algorithms that solve real world problems. DEAP’s creator mod-

ule allows users to:

create classes with a single line of code (inheritance);

add attributes (composition);

group classes in a single module (sandboxing).

In the following listing, we create a minimizing fitness.

from deap import base, creator
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))

SIGEVOlution Volume 6, Issue 2 17

https://github.com/DEAP/notebooks

EDITORIAL

The create function expects at least two arguments; the name of the

class to be created and the base class it inherits from. The next ar-

guments are used as class attributes. Thus, the class just created is

a FitnessMin inheriting from the base class Fitness and having a

weights attribute set to the one element tuple (−1.0,), indicating mini-

mization of a single objective. The trailing comma is mandatory to define

a single item tuple in Python. A multi-objective fitness would be created

using a multi-element tuple.

Next, we define with the same mechanism an Individual class inherit-

ing from a list and composed with a fitness attribute.

creator.create("Individual", list, fitness=creator.FitnessMin)

When an Individual is instantiated, its fitness is initialized as an

instance of the previously defined FitnessMin class. This is illustrated

in the following example,

ind = creator.Individual([1,0,1,0,1])
ind.fitness.values = (sum(ind),)

where an individual is created from a list of binary values and the value

of its fitness is set to the sum of its elements. In DEAP, the fitness value

is always multi-objective with the single objective case being a tuple of

one element.

Operators

Operator selection is another crucial part of evolutionary algorithms. It

must be straightforward and its parametrization intuitive. DEAP’s Toolbox

enables users to:

create aliases for operators;

register operators’ parameters;

interchange operators efficiently;

regroup all operators in a single structure.

The next example presents the construction of a toolbox and how opera-

tors and their parameters are registered.

from deap import tools
toolbox = base.Toolbox()
toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutGaussian, mu=0.0, std=1.0)

The register function expects at least two arguments; the alias of the

function and the function itself. The next arguments are passed to the

function when called, similarly to the partial function from the stan-

dard functools module. Thus, the first operator is a one point crossover

registered under the alias mate. The second operator, a gaussian muta-

tion, is registered with its parameters under the generic name mutate.

Both operators are available from the tools module along with many more

instruments supporting evolution that are presented at the end of this

paper.

During subsequent experiments, replacing the one point crossover by a

two point crossover is as easy as substituting the third line of the previous

listing by the following one.

toolbox.register("mate", tools.cxTwoPoint)

Wherever the generic function mate is used, the new two point crossover

will be used.

Parallelization

DEAP is parallel ready. The idea is to use a mapping operation that ap-

plies a function to every item of a sequence, for instance to evaluate the

fitnesses. By default, every toolbox is registered with the standard map

function of Python. For algorithms to evaluate individuals in parallel, one

only needs to replace this alias by a parallel map such as the one pro-

vided by SCOOP [3], a library capable of distributing concurrent tasks on

various environments, from grids of workstations to supercomputers.

from scoop import futures
toolbox.register("map", futures.map)

DEAP is also compatible with the standard multiprocessing module, if the

user only cares to run on a single computing node with multiple cores.

import multiprocessing
pool = multiprocessing.Pool()
toolbox.register("map", pool.map)

With these powerful tools, DEAP allows scientists and researchers with lit-

tle programming knowledge to easily implement distributed and parallel

EAs.

SIGEVOlution Volume 6, Issue 2 18

EDITORIAL

Preaching by Example

The best introduction to evolutionary computation with DEAP is to

present simple, yet compelling examples. The following sections set forth

how algorithms are easy to implement while keeping a strong grip on how

they behave. The first section introduces a classical genetic algorithm

and exposes different levels of explicitness. The second section presents

how genetic programming is implemented in DEAP and the versatility of

the GP module. The final example demonstrates how easy it is to imple-

ment a generic distributed island model with SCOOP.

A Simple Genetic Algorithm

A commonly used example in evolutionary computation is the OneMax

problem which consists in maximizing the number of ones in a binary

sequence. The more ones an individual contains, the higher its fitness

value is. Using a genetic algorithm to find such an individual is relatively

straightforward. Applying crossovers and mutations on a population of

randomly generated binary individuals and selecting the fittest ones at

each generation usually converge to a perfect (all ones) solution. A prob-

lem of this simplicity should be solved with a very simple program.

Figure 1(a) presents all that is needed to solve the OneMax problem with

DEAP. The first two lines import the necessary modules. Next, on lines

3 and 4, two types are created; a maximizing fitness (note the positive

weights), and a list individual composed with an instance of this maximiz-

ing fitness. Then, on lines 5 and 6, the evaluation function is defined. It

counts the number of ones in a binary list by summing its elements (note

again the one element returned tuple corresponding to a single objective

fitness). Subsequently, a Toolbox is instantiated in which the necessary

operators are registered. The first operator, on line 8, produces binary

values, in this case integers in [0,1], using the standard random mod-

ule. The alias individual, on line 9, is assigned to the helper function

initRepeat, which takes a container as the first argument, a function

that generates content as the second argument, and the number of rep-

etitions as the last argument. Thus, calling the individual function instan-

tiates an Individual of n=100 bits by calling repeatedly the registered

attr_bool function. The same repetition initializer is used on the next

line to produce a population as a list of individuals. The missing number

of repetitions n will be given later in the program. Subsequently, on lines

11 to 14, the evaluation, crossover, mutation and selection operators are

registered with all of their parameters.

The main program starts at line 16. First, a population of n=300 individ-

uals is instantiated. Then, the algorithm, provided with the population

and the toolbox, is run for ngen=40 generations with cxpb=0.5 proba-

bility of mating and mutpb=0.2 probability of mutating an individual for

each generation. Finally, on line 35, the best individual of the resulting

population is selected and displayed on screen.

Controlling Everything

When developing, researching or using EAs, pre-implemented canned

algorithms seldom do everything that is needed. Usually, develop-

ers/researchers/users have to dig into the framework to tune, add or re-

place a part of the original algorithm. DEAP breaks with the traditional

black-box approach on that precise point; it encourages users to rapidly

build their own algorithms. With the different tools provided by DEAP, it

is possible to design a nimble algorithm that tackles most problems at

hand.

Starting from the previous OneMax solution of Figure 1(a), a first decom-

position of the algorithm replaces the canned eaSimple function (line

17) by the generational loop illustrated in Figure 1(b). Again, this exam-

ple is exhaustive but still very simple. On the first 3 lines, the evalua-

tion function is applied to every individual in the population by the map

function contained in every toolbox. Next, on line 18, a loop over both

the population and the evaluated fitnesses sets each individual’s fitness

value. Thereafter, on line 20, the generational loop begins. It starts by

selecting k individuals from the population. Then, the selected individu-

als are varied by crossover and mutation using the varAnd function. A

second variation scheme varOr can also be used, where the individuals

are produced by crossover or mutation. Once modified, the individuals

are evaluated for the next iteration. Only freshly produced individuals

have to be evaluated; they are filtered by their fitness validity; valid

property of the fitness (line 31). This version of the program provides the

possibility to change the stopping criterion and add components to the

evolution.

SIGEVOlution Volume 6, Issue 2 19

EDITORIAL

1 import random
2 from deap import algorithms, base, creator, tools

3 creator.create("FitnessMax", base.Fitness, weights=(1.0,))
4 creator.create("Individual", list, fitness=creator.FitnessMax)

5 def evalOneMax(individual):
6 return (sum(individual),)

7 toolbox = base.Toolbox()
8 toolbox.register("attr_bool", random.randint, 0, 1)
9 toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)

10 toolbox.register("population", tools.initRepeat, list, toolbox.individual)
11 toolbox.register("evaluate", evalOneMax)
12 toolbox.register("mate", tools.cxTwoPoint)
13 toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
14 toolbox.register("select", tools.selTournament, tournsize=3)

15 if __name__ == "__main__":
16 pop = toolbox.population(n=300)
17 algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)

17 fitnesses = toolbox.map(toolbox.evaluate, pop)
18 for ind, fit in zip(pop, fitnesses):
19 ind.fitness.values = fit

20 for g in range(ngen):
21 pop = toolbox.select(pop, k=len(pop))
22 pop = algorithms.varAnd(pop, toolbox, cxpb, mutpb)

22 offspring = [toolbox.clone(ind) for ind in pop]

23 for child1, child2 in zip(offspring[::2], offspring[1::2]):
24 if random.random() < cxpb:
25 toolbox.mate(child1, child2)
26 del child1.fitness.values, child2.fitness.values

27 for mutant in offspring:
28 if random.random() < mutpb:
29 toolbox.mutate(mutant)
30 del mutant.fitness.values

(a)

(b) (c)

35 print(tools.selBest(pop, k=1)[0])

31 invalids = [ind for ind in pop if not ind.fitness.valid]
32 fitnesses = toolbox.map(toolbox.evaluate, invalids)
33 for ind, fit in zip(invalids, fitnesses):
34 ind.fitness.values = fit

Fig. 1: OneMax example with DEAP. (a) Simpler version relying on the pre-implemented eaSimple algorithm. (b) Unboxing of the eaSimple algorithm to control

selection, variation and evaluation. (c) Unfolding of the variation to handle crossover and mutation.

SIGEVOlution Volume 6, Issue 2 20

EDITORIAL

An even greater level of detail can be obtained by substituting the

varAnd function by its full content, presented in Figure 1(c). This listing

starts with the duplication of the population by the clone tool available

in every toolbox. Then, the crossover is applied to a portion of consecu-

tive individuals. Each modified individual sees its fitness invalidated by

the deletion of its values on line 26. Finally, a percentage of the popula-

tion is mutated and their fitness invalidated. This variant of the algorithm

provides control over the application order and the number of operators,

among other aspects.

The explicitness in which algorithms are written with DEAP clarifies the

experiments. This eliminates any ambiguity on the different aspects of

the algorithm that could, when overlooked, jeopardize the reproducibility

and interpretation of results.

Genetic Programming

DEAP also includes every component necessary to design genetic pro-

gramming algorithms with the same ease as for genetic algorithms. For

example, the most commonly used tree individual can be created as fol-

lows:

import math, operator
from deap import base, creator, tools, gp

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree,

fitness=creator.FitnessMin)

The primitive tree is provided in the gp module since it is one of the few

data types the Python standard library does not provide. The primitives

and terminals that will populate the trees are regrouped in a primitive

set. The following listing presents a primitive set instantiation with basic

operators provided by the standard library operator module. The arity

of a primitive is its number of operands.

pset = gp.PrimitiveSet(name="MAIN", arity=1)
pset.addPrimitive(operator.add, arity=2)
pset.addPrimitive(operator.sub, arity=2)
pset.addPrimitive(operator.mul, arity=2)
pset.addPrimitive(operator.neg, arity=1)

Functions that initialize individuals and populations are registered in a

toolbox just as in the preceding genetic algorithm example. DEAP imple-

ments the three initialization methods proposed by Koza [4] to generate

trees: full, grow, and half-and-half.

toolbox = base.Toolbox()
toolbox.register("expr", gp.genFull, pset=pset, min_=1, max_=3)
toolbox.register("individual", tools.initIterate,

creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat,

list, toolbox.individual)

We may now introduce an example of a symbolic regression evaluation

function.

def evaluateRegression(individual, points, pset):
func = gp.compile(expr=individual, pset=pset)
sqerrors = ((func(x) - (x**4 + x**3 + x**2 + x))**2 for x in points)
return (math.sqrt(sum(sqerrors) / len(points)),)

First, the gp.compile function transforms the primitive tree into its ex-

ecutable form, a Python function, using a primitive set pset given as the

evaluation function’s third argument. Then, the rest is simple math: we

compute the root mean squared error between the individual’s program

and the target x4+x3+x2+x on a set of points, the evaluation function’s

second argument.

Next, the evaluation function and the variation operators are regis-

tered similarly to Figure 1, while line 14 to the end remain exactly the

same. Furthermore, using external libraries such as NetworkX [5] and

PyGraphviz [6], the best primitive trees can be visualized1 as presented

in Figure 2.

The primitives are not limited to standard library operators, any func-

tion or instance method can be added to a primitive set. Terminals can

be any type of objects and even functions without argument. The next

example, presented in Figure 3, takes advantage of this flexibility and re-

duces the runtime of the previous example by vectorizing the evaluation

using Numpy [7], a library of high-level mathematical functions operating

on multidimensional arrays.

The idea is to evolve a program whose argument is a vector instead of

a scalar. Most of the code remains identical, only minor modifications

(highlighted in Figure 3) are required. First, we replace the operators

in the primitive set by Numpy operators that work on vectors (lines 6

to 9). Then, we remove the loop from the evaluation function (line 12),

since it is implicit in the operators. Finally, we replace the sum and sqrt

functions by their faster Numpy equivalent (line 13) and our regression

problem is now vectorized.

1 See the notebook version of this article for the complete code to visualize the

tree: http://github.com/DEAP/notebooks.

SIGEVOlution Volume 6, Issue 2 21

http://github.com/DEAP/notebooks.

EDITORIAL

Fig. 2: Example of a GP individual generated with DEAP.

The execution is thereby significantly improved as the scalar example

runs in around 3 seconds to optimize the regression on 20 points, while

the vectorial runtime is identical but for a regression on 1000 points.

By modifying only 6 lines of code, not only are we able to vectorize our

problem, but the runtime is reduced by a factor of 50.

In addition to the wide support of function and object types, DEAP’s

gp module also supports automatically defined functions (ADF), strongly

typed genetic programming (STGP), and object-oriented genetic pro-

gramming (OOGP), for which examples are provided in the library doc-

umentation.

Distributed Island Model

The island model paradigm consists in multiple populations evolving sep-

arately and exchanging individuals on a regular basis. The final example

illustrates how this scheme can be implemented with DEAP and SCOOP.

The code presented in Figure 4 evolves 5 islands of 300 individuals. The

algorithm runs for 40 generations, and every 10 generations, the 15 best

individuals from one island are migrated to the next, following a ring

topology.

1 import numpy
2 from deap import algorithms, base, creator, tools, gp

3 creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
4 creator.create("Tree", gp.PrimitiveTree, fitness=creator.FitnessMin)

5 pset = gp.PrimitiveSet(name="MAIN", arity=1)
6 pset.addPrimitive(numpy.add, arity=2)
7 pset.addPrimitive(numpy.subtract, arity=2)
8 pset.addPrimitive(numpy.multiply, arity=2)
9 pset.addPrimitive(numpy.negative, arity=1)

10 def evaluateRegression(individual, points, pset):
11 func = gp.compile(expr=individual, pset=pset)
12 sqerrors = (func(points)-(points**4 + points**3 +

points**2 + points))**2
13 return (numpy.sqrt(numpy.sum(sqerrors) / len(points)),)

14 toolbox = base.Toolbox()
15 toolbox.register("expr", gp.genFull, pset=pset, min_=1, max_=3)
16 toolbox.register("individual", tools.initIterate, creator.Tree,

toolbox.expr)
17 toolbox.register("population", tools.initRepeat, list,

toolbox.individual)
18 toolbox.register("evaluate", evaluateRegression,

points=numpy.linspace(-1, 1, 1000), pset=pset)
19 toolbox.register("mate", gp.cxOnePoint)
20 toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
21 toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut,

pset=pset)
22 toolbox.register("select", tools.selTournament, tournsize=3)

23 if __name__ == "__main__":
24 pop = toolbox.population(n=300)
25 algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
26 print(tools.selBest(pop, k=1)[0])

�
��
�

�

Fig. 3: Vectorized Genetic Programming example.

SIGEVOlution Volume 6, Issue 2 22

EDITORIAL

The for-loop starting at line 6 maps the algorithm to each island (line 7),

making them evolve independently for FREQ=10 generations. Then, the

resulting populations are recovered on line 8 and a ring topology migra-

tion is applied on line 9, using the built-in migRing operator to exchange

individuals between islands. Since eaSimple uses the operator regis-

tered on line 1 to map the evaluation on the individuals, fitnesses are

also computed in parallel. Therefore, the computations are distributed at

2 different levels.

The distribution scheme is presented in Figure 5. Each island evolution

is executed by a distinct process and so is every evaluation. The listing

in Figure 4 is generic. It could thus replace the main section of any of

the previously presented examples: lines 16 and 17 in Figure 1(a) and

lines 24 and 25 in Figure 3. To run this code on multiple processors,

assuming the source code is in file island.py, one simply needs to enter

the command line: python -m scoop island.py

Evolution Support

DEAP comes with several supporting tools that can be easily integrated

into any algorithm. This section presents some of them in the context of

the OneMax example (Figure 1).

The first tool, Statistics, computes statistics on arbitrary attributes of des-

ignated objects, usually the fitness of the individuals. The attribute is

specified by a key function at the statistics object instantiation before

starting the algorithm, between lines 16 and 17 of Figure 1(a).

stats = tools.Statistics(key=operator.attrgetter("fitness.values"))

This is followed by the registration of the statistical functions as for a

toolbox.

stats.register("avg", numpy.mean)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

Ultimately, at every generation, a statistical record of the population is

compiled using the registered functions.

record = stats.compile(pop)
print(record)

1 toolbox.register("map", futures.map)
2 toolbox.register("migrate", tools.migRing, k=15,

selection=tools.selBest)

3 NGEN, FREQ = 40, 10
4 toolbox.register("algorithm", algorithms.eaSimple, toolbox=toolbox,

cxpb=0.5, mutpb=0.2, ngen=FREQ, verbose=False)

5 islands = [toolbox.population(n=300) for i in range(5)]
6 for i in range(0, NGEN, FREQ):
7 results = toolbox.map(toolbox.algorithm, islands)
8 islands = [island for island, logbook in results]
9 toolbox.migrate(islands)

�
�

Fig. 4: Distributed Island Model example.

Migration

Migration Migration

Island Island

Island

...
Evaluations

...
Evaluations

...Evaluations

...Migration

Fig. 5: Island model distribution scheme. Each island runs in a different pro-

cess and evaluations are also done in parallel. SCOOP takes care of all

necessary load balancing.

The statistics compilation produces a dictionary containing the statistical

keywords and their respective value. These last lines, added after the

evaluation part of Figure 1(b) (line 34), will produce a screen log of the

evolution statistics.

SIGEVOlution Volume 6, Issue 2 23

EDITORIAL

For posterity and better readability, statistics can also be logged in a

Logbook, which is simply a list of recorded dictionaries that can be printed

with an elegant layout. For example, the following lines create a new

logbook, then record the previously computed statistics and print them

to the screen.

logbook = tools.Logbook()
logbook.record(gen=g, nevals=300, fitness=record)
print(logbook)

fitness

gen nevals avg min max
0 300 49.9933 35 64

The next tool, named Hall of Fame, preserves the best individuals that

appeared during an evolution. At every generation, it scans the popula-

tion and saves the individuals in a separate archive that does not interact

with the population. If the best solution disappears during the evolution,

it will still be available in the hall of fame. The hall of fame can be pro-

vided as an argument to the algorithms (Figure 1(a) line 17) as follows:

halloffame = tools.HallOfFame(maxsize=10)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,

halloffame=halloffame)

Moreover, the hall of fame can be updated manually right after the pop-

ulation is evaluated (Figure 1(b) line 34) with the following line of code.

halloffame.update(pop)

The hall of fame proposes a list interface where the individuals are sorted

in descending order of fitness. Thus, the fittest solution can be retrieved

by accessing the list’s first element.

best = halloffame[0]

A Pareto dominance version of the hall of fame is also available. The

Pareto Front maintains an archive of non-dominated individuals along

the evolution. Its interface is the same as the standard hall of fame.

Another tool, called the History, tracks the genealogy of the individuals

in a population. By wrapping the variation operators, the history saves

the parents of each individual. This feature is added to the variation

operators of the toolbox with the following lines.

Fig. 6: Genealogy tree of the best individual found in the OneMax problem dur-

ing the last 5 variation operations. The ancestors are at the top while

the fittest offspring is at the bottom. The numbers represent the solution

index. A node with two incoming links is the result of a crossover (see

7229), while a node with a single incoming link comes from a mutation

(see 7320).

history = tools.History()
toolbox.decorate("mate", history.decorator)
toolbox.decorate("mutate", history.decorator)

It is therefore possible to determine the genesis of individuals. Figure 6

presents the genealogy of the best individual in the OneMax example for

the last 5 variation operations. The graph is produced by the NetworkX

library and the following listing.

h = history.getGenealogy(haloffame[0], max_depth=5)
graph = networkx.DiGraph(h)
networkx.draw(graph)

The last presented tool is a checkpointing facility. Rather than a DEAP

object, checkpointing is ensured by the powerful pickle standard library

module that can serialize almost any Python object. Checkpointing only

requires selecting objects that shall be preserved and the write fre-

quency. This is exactly what is done in the following lines that can be

added at the end of the generational loop of Figure 1(b).

SIGEVOlution Volume 6, Issue 2 24

EDITORIAL

import pickle

if g % freq == 0:
cp = dict(population=pop, generation=g, rndstate=random.getstate())
pickle.dump(cp, open("checkpoint.pkl", "w"))

These last lines write into a file the population, the generation number,

and the random number generator state so that this information can be

used later to restart an evolution from this exact point in time. Reloading

the data is as simple as reading the pickled dictionary and accessing its

attributes.

cp = pickle.load(open("checkpoint.pkl", "r"))
pop = cp["population"]
g = cp["generation"]
random.setstate(cp["rndstate"])

This simple mechanism provides fault tolerance to any sort of evolution-

ary algorithms implemented with DEAP. This happens to be critical when

exploiting large computational resources where chances of failure grow

quickly with the number of computing nodes. Even in very stable exe-

cution environments, checkpoints can significantly reduce the amount of

time spent experimenting by allowing evolutions to restart and continue

beyond the original stopping criteria.

Conclusion

DEAP proposes an agile framework to easily prototype and execute ex-

plicit evolutionary algorithms. Its creator module is instrumental for

building custom transparent data structures for the problem at hand. Its

toolbox gathers all necessary operators and their arguments in a single

handy structure. Its design provides straightforward distributed execu-

tion with multiple distribution libraries. The presented examples covered

only a small part of DEAP’s capabilities that include evolution strategies

(including CMA-ES), multi-objective optimization (NSGA-II and SPEA-II),

co-evolution, particle swarm optimization, as well as many benchmarks

(continuous, binary, regression, and moving peaks), and examples (more

than 40).

After more than 4 years of development, DEAP version 1.0 has been re-

leased in February 2014. DEAP is an open source software, licensed

under LGPL, developed primarily at the Computer Vision and Systems

Laboratory of Université Laval, Québec, Canada. DEAP is compatible

with Python 2 and 3. It has a single dependency on Numpy for com-

puting statistics and running CMA-ES. Try it out and become nimbler too:

http://deap.gel.ulaval.ca.

References

[1] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C.

Gagné. DEAP: Evolutionary Algorithms Made Easy. Journal of Ma-

chine Learning Research, 13:2171–2175, 2012.

[2] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C.

Gagné. DEAP: A Python Framework for Evolutionary Algorithms. In

Companion Proceedings of the Genetic and Evolutionary Computa-

tion Conference, pages 85–92, 2012.

[3] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau. SCOOP: Scalable COn-

current Operations in Python.

http://www.pyscoop.org/

[4] J. R. Koza. Genetic Programming - On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network

structure, dynamics, and function using NetworkX. In Proceedings

of the Python in Science Conference, pages 11-15, 2008. http:

//networkx.github.io

[6] A. A. Hagberg, D. A. Schult, and M. Renieris. PyGraphviz a Python

interface to the Graphviz graph layout and visualization package.

http://networkx.lanl.gov/pygraphviz

[7] E. Jones and T. Oliphant and P. Peterson and others. SciPy: Open

source scientific tools for Python. http://www.scipy.org

SIGEVOlution Volume 6, Issue 2 25

http://deap.gel.ulaval.ca
http://www.pyscoop.org/
http://networkx.github.io
http://networkx.github.io
http://networkx.lanl.gov/pygraphviz
http://www.scipy.org

EDITORIAL

About the authors

François-Michel De Rainville received his Master’s

degree from Université Laval, Québec, Canada, in 2010,

for his work on interactive designs of experiments to en-

hance comprehension of complex systems. He is cur-

rently pursuing his PhD degree at Université Laval on

using a swarm of robots to explore and analyze unknown environ-

ments. His major area of interest are robotics, pattern recognition,

machine learning, evolutionary algorithms, and computer vision. He

is one of the main DEAP developers.

Homepage: http://vision.gel.ulaval.ca/~fmdrainville

Email: francois-michel.de-rainville.1@ulaval.ca

Félix-Antoine Fortin received a M.Sc. in Electrical En-

gineering from Université Laval in 2010 for his work on

automatic surveillance camera placement with genetic

algorithms. He is currently completing a Ph.D at Uni-

versité Laval on multimodal optimization while working

as an high performance computing analyst at Calcul Québec, a re-

search consortium for High Performance Computing (HPC). His main

research interests are optimization, pattern recognition, evolution-

ary algorithms, and distributed computing. He is also one of the

main developer of DEAP.

Homepage: http://vision.gel.ulaval.ca/~fafortin/

Email: felix-antoine.fortin.1@ulaval.ca

Marc-André Gardner received a B.Sc. in Computer

Engineering from Université Laval in 2012. He has

worked on bloat control in genetic programming, and

is currently completing a M.Sc. in Electrical Engineering

on stochastic grammar optimization applied to genetic

programming. He has also worked on a task distribution framework

in Python, and is a major contributor to DEAP, in addition to being

one of its power users.

Email: marc-andre.gardner.1@ulaval.ca

Marc Parizeau is a professor of Computer Engineer-

ing at Université Laval, Québec City. He obtained his

Ph.D. in 1992 from École Polytechnique de Montréal.

His research interests are mainly in the field of intel-

ligent systems, in machine learning for pattern recog-

nition in particular, as well as in parallel and distributed systems.

In 2008, he created a High Performance Computing (HPC) center

at Université Laval, and is the current scientific Director of Calcul

Québec, an HPC consortium for the province of Québec, also one

of the four regional divisions of Compute Canada, the national HPC

platform.

Homepage: http://vision.gel.ulaval.ca/~parizeau

Email: parizeau@gel.ulaval.ca

Christian Gagné received a B.Ing. in Computer Engi-

neering and a PhD in Electrical Engineering from Uni-

versité Laval in 2000 and 2005, respectively. He is

professor of Computer Engineering at Université Laval

since 2008. His research interests are on the engineer-

ing of intelligent systems, in particular systems involving machine

learning and evolutionary computation. He is member of editorial

board of the Genetic Programming and Evolvable Machines journal,

and participated to the organization of several conferences. He is

also the main developer of Open BEAGLE, a generic C++ framework

for evolutionary computation, from which lessons learnt served as

inspiration to the design of DEAP.

Homepage: http://vision.gel.ulaval.ca/~cgagne

Email: christian.gagne@gel.ulaval.ca

SIGEVOlution Volume 6, Issue 2 26

http://vision.gel.ulaval.ca/~fmdrainville
mailto:francois-michel.de-rainville.1@ulaval.ca
http://vision.gel.ulaval.ca/~fafortin/
mailto:felix-antoine.fortin.1@ulaval.ca
mailto:marc-andre.gardner.1@ulaval.ca
http://vision.gel.ulaval.ca/~parizeau
mailto:parizeau@gel.ulaval.ca
http://vision.gel.ulaval.ca/~cgagne
mailto:christian.gagne@gel.ulaval.ca

GECCO-2013 Competitions
Daniele Loiacono

What the Numbers of GECCO-2013 Competitions?

The 2013 GECCO competitions offered six different challenges involving

fifteen organizers and overall received the astonishing number of thirty-

one submissions. As usually happens at GECCO, competitions repre-

sented an opportunity to dig into challenging problems while competing

with other members of the GECCO’s community. At the same time, they

were also a nice spot to showcase some amazing applications of evo-

lutionary computation; the results of the competitions were presented

during two lunch-time sessions of the conference. What follows is a brief

summary for each one of the six competitions in the program.

Visualizing Evolution

The Visualizing Evolution Competition was organized by David Walker,

Richard Everson, and Jonathan Fieldsend. To enter this competition, the

participants were asked to exhibit cutting edge visualizations of an evolu-

tionary process. The competition was also connected to the Visualisation

Methods in Genetic and Evolutionary Computation workshop where par-

ticipants were allowed to present their work. The competition attracted

two entries and was won by Christian E. Munoz Villalobos, Douglas M.

Dias and Marco Aurelio C. Pacheco.

EvoRobocode

The EvoRobocode Competition, organized by Daniele Loiacono and

Moshe Sipper, challenged the participants to apply Evolutionary Compu-

tation to design a competitive robot tank for the Robocode platform. The

winning robot, SCALPbot, was developed by Robin Harper using Gram-

matical Evolution together with a spatial co-evolution system.

Evolutionary Art, Design and Creativity

The Evolutionary Art, Design and Creativity Competition, organized

by Christian Gagné, Amy K. Hoover, Eduardo R. Miranda, and Craig

Reynolds, aimed at showcasing human-quality artistic works or creativity

enhancing experiences generated by or with the assistance of evolution.

Submitted works could be music, images, sculptures, videos, interactive

online experiences or any form of expression. The goal was that to ex-

hibit some form of independent creativity through genetic and evolution-

ary computation. Among several high quality entries, F. Fernández de

Vega, L. Navarro, C. Cruz, P. Hernández, T. Gallego and L. Espada won

this competition with a study on human creativity from an evolutionary

perspective.

GPU for Genetic and Evolutionary Computation

The GPUs for Genetic and Evolutionary Computation Competition, orga-

nized by Daniele Loiacono and Antonino Tumeo, focused on the applica-

tion of genetic and evolutionary computation that can maximally exploit

the parallelism provided by low-cost consumer graphical cards. The en-

tries submitted have been evaluated in terms of degree of parallelism ob-

tained, overall speed-up, and programming style. The competition was

won by Shigeyoshi Tsutsui and Noriyuki Fujimoto that presented a fast

quadratic assignment problem solver based on a multiple GPUs paral-

lelization of an ACO.

SIGEVOlution Volume 6, Issue 2 27

http://viz.geccocompetitions.com
http://www.vizgec.ex.ac.uk/
http://www.vizgec.ex.ac.uk/
http://evorobocode.geccocompetitions.com/
http://eadcc.geccocompetitions.com/
http://gpu.geccocompetitions.com/

EDITORIAL

Simulated Car Racing

The Simulated Car Racing Competition was organized by Daniele Loia-

cono and Pier Luca Lanzi. The goal of this competition was to design

and submit a controller for a racing car that will compete on a set of un-

known tracks. After more than twenty races on three different tracks, the

winner was proclaimed: Mr. Racer, the winning entry submitted by Jan

Quadflieg, Tim Delbrugger, Kai Verlage and Mike Preuss, combined suc-

cessfully a CMA-ES to optimize the parameters of the controller with an

online learning algorithm to build a model of the track.

The Industrial Challenge

The Industrial Challenge was organized by Martina Friese, Oliver Flasch,

Olaf Mersmann, and Thomas Bartz-Beielstein with GreenPocket as indus-

trial partner. Goal of this competition was to develop accurate and effi-

cient forecasting methods and to apply them to real-world smart home

time series data. The competition attracted several entries and was won

by Farzad Noorian with a solution based on SVMs.

Sponsors

Competitions were sponsored by GreenPocket, that awarded the winner

of the Industrial Challenge with an iPad, by NVIDIA, that donated three

TESLA K20 GPUs for the best entries, and by GECCO that awarded runner-

ups with a small cash prize.

SIGEVOlution Volume 6, Issue 2 28

http://scr.geccocompetitions.com/
http://www.spotseven.de/gecco-challenge/gecco-challenge-2013/

GECCO-2014 “Humies” Awards
July 14, 2014

$10,000 in Awards
The 2014 "Humies" for Human-Competitive Results

Homepage: www.human-competitive.org

Deadline June 2, 2014

Entries are hereby solicited for awards totaling $10,000 for human-

competitive results that have been produced by any form of genetic

and evolutionary computation (including, but not limited to genetic al-

gorithms, genetic programming, evolution strategies, evolutionary pro-

gramming, learning classifier systems, grammatical evolution, gene ex-

pression programming, differential evolution, etc.) and that have been

published in the open literature between the deadline for the previous

competition and the deadline for the current competition.

The competition will be held as part of the 2014 Genetic and Evolutionary

Computation (GECCO) conference. Presentations of entries will be made

at the conference. The awards and prizes will be announced and pre-

sented during the conference. See http://www.sigevo.org/gecco-2014/

Important Dates

Monday June 2, 2014 — Deadline for entries (consisting of one TEXT

file and one or more PDF files). Send entries to koza@human-

competitive.org

Monday June 23, 2014 — Finalists will be notified by e-mail

Thursday July 3, 2014 — Finalists must submit their presentation

(e.g., PowerPoint, PDF) for posting on the competition web site. Send

presentations to koza@human-competitive.org

July 12-16,2014 (Sat-Wed) — The GECCO conference

Monday July 14, 2014 (tentative) — Presentations before judging

committee at public session of the GECCO conference

Wednesday July 16, 2014 (tentative) — Announcement of awards at

plenary session of the GECCO conference

If you plan to make an entry for this competition, please check the web

site at www.human-competitive.org for updated information prior to sub-

mitting your entry. If you make an entry, please re-check this web site

periodically prior to the conference for additional (and possible changing)

information and instructions.

Judging Committee

Erik Goodman

Una-May O’Reilly

Wolfgang Banzhaf

Darrell Whitley

Lee Spector

Call for Entries

Techniques of genetic and evolutionary computation are being increas-

ingly applied to difficult real-world problems — often yielding results that

are not merely academically interesting, but competitive with the work

done by creative and inventive humans. Starting at the Genetic and Evo-

lutionary Computation Conference (GECCO) in 2004, cash prizes have

been awarded for human-competitive results that had been produced by

some form of genetic and evolutionary computation in the previous year.

This prize competition is based on published results. The publication may

be a paper at the GECCO conference (i.e., regular paper, poster paper, or

any other full-length paper), a paper published anywhere in the open lit-

erature (e.g., another conference, journal, technical report, thesis, book

chapter, book), or a paper in final form that has been unconditionally ac-

cepted by a publication and is "in press" (that is, the entry must be iden-

tical to something that will be published imminently without any further

changes).

SIGEVOlution Volume 6, Issue 2 29

http://www.human-competitive.org
http://www.sigevo.org/gecco-2014/
mailto:koza@human-competitive.org
mailto:koza@human-competitive.org
mailto:koza@human-competitive.org
http://www.human-competitive.org

EDITORIAL

The publication may not be an intermediate or draft version that is still

subject to change or revision by the authors or editors. The publication

must meet the usual standards of a scientific publication in that it must

clearly describe a problem, the methods used to address the problem, the

results obtained, and sufficient information about how the work was done

in order to enable the work described to be replicated by an independent

person.

An automatically created result is considered "human-competitive" if it

satisfies at least one of the eight criteria below.

(A) The result was patented as an invention in the past, is an im-

provement over a patented invention, or would qualify today as a

patentable new invention.

(B) The result is equal to or better than a result that was accepted as

a new scientific result at the time when it was published in a peer-

reviewed scientific journal.

(C) The result is equal to or better than a result that was placed into

a database or archive of results maintained by an internationally

recognized panel of scientific experts.

(D) The result is publishable in its own right as a new scientific result

independent of the fact that the result was mechanically created.

(E) The result is equal to or better than the most recent human-created

solution to a long-standing problem for which there has been a suc-

cession of increasingly better human-created solutions.

(F) The result is equal to or better than a result that was considered an

achievement in its field at the time it was first discovered.

(G) The result solves a problem of indisputable difficulty in its field.

(H) The result holds its own or wins a re gulated competition involv-

ing human contestants (in the form of either live human players or

human-written computer programs).

Contestants should note that a pervasive thread in most of the above

eight criteria is the notion that the result satisfy an "arms length" stan-

dard — not a yardstick based on the opinion of the author, the author’s

own institution (educational or corporate), or the author’s own close as-

sociates. "Arms length" may be established in numerous ways. For exam-

ple, if the result is a solution to "a long-standing problem for which there

has been a succession of increasingly better human-created solutions,"

it is clear that the scientific community (not the author, the author’s own

institution, or the author’s close associates) have vetted the significance

of the problem. Similarly, a problem’s significance may be established if

the re sult replicates or improves upon a scientific result published in a

peer-reviewed scientific journal, replicates or improves upon a previously

patented invention, constitutes a patentable new invention, or replicates

or improves a result that was considered an achievement in its field at

the time it was first discovered. Similarly, a problem’s significance may

be established if the result holds its own or wins a regulated competition

involving live human players or human-written computer programs. In

each of the foregoing examples, the standard for human-competitiveness

is being established external to the author, the author’s own institution,

or the author’s close associates. It is also conceivable to rely only on

criterion G ("The result solves a problem of indisputable difficulty in its

field"); however, if only criterion G is claimed, there must be a clear

and convincing argume nt that the problem’s "difficulty" is indeed "in-

disputable."

The competition will be held as part of the annual Genetic and Evolution-

ary Computation (GECCO) conference. Presentations of entries are to be

made at the conference. The awards and prizes will be announced at the

conference.

Cash prizes of $5,000 (gold), $3,000 (silver), and bronze (either one prize

of $2,000 or two prizes of $1,000) will be awarded for the best entries

that satisfy one or more of the criteria for human-competitiveness. The

awards will be divided equally among co-authors unless the authors spec-

ify a different division at the time of submission.

Prizes are paid by check in U.S. dollars.

Detailed Instructions for Entering the "Humies"

If you plan to make an entry into this competition, please check the web

site at www.human-competitive.org for updated information prior to sub-

mitting your entry. If you make an entry, please re-check the web site

prior to the conference for possible changes in the instructions or the

schedule.

All entries are to be sent electronically to koza@human-competitive.org.

All entries will be promptly acknowledged, so please make an inquiry if

you do not receive a prompt acknowledgment.

SIGEVOlution Volume 6, Issue 2 30

http://www.human-competitive.org
mailto:koza@human-competitive.org

EDITORIAL

An entry must consist of one TEXT file and one or more PDF files. If

the same authors are making multiple entries, please submit separate e-

mails, each containing both the required TEXT and PDF file(s) supporting

the entry.

The TEXT file must contain the fo llowing 10 items. Please be very careful

to include ALL required information. Contestants are alerted to the fact

that items 6 and 9 are especially important and will be the main basis by

which entries will be judged. The papers and presentations from earlier

competitions (starting in 2004) are posted at the competition web site at

www.human-competitive.org and may be informative.

1. the complete title of one (or more) paper(s) published in the open

literature describing the work that the author claims describes a

human-competitive result;

2. the name, complete physical mailing address, e-mail address, and

phone number of EACH author of EACH paper(s);

3. the name of the corresponding author (i.e., the author to whom no-

tices will be sent concerning the competition);

4. the abstract of the paper(s);

5. a list containing one or more of the eight letters (A, B, C, D, E, F,

G, or H) that correspond to the criteria (see above) that the author

claims that the work satisfies;

6. a statement stating why the result satisfies the criteria that

the contestant claims (see examples of statements of human-

competitiveness as a guide to aid in constructing this part of the

submission);

7. a full citation of the paper (that is, author names; publication date;

name of journal, conference, technical report, thesis, book, or book

chapter; name of editors, if applicable, of the journal or edited book;

publisher name; publisher city; page numbers, if applicable);

8. a statement either that "any prize money, if any, is to be divided

equally among the co-authors" OR a specific percentage breakdown

as to how the prize money, if any, is to be divided among the co-

authors; and

9. a statement stating why the judges should consider the entry as

"best" in comparison to other entries that may also be "human-

competitive;"

10. An indication of the general type of genetic or evolutionary compu-

tation used, such as GA (genetic algorithms), GP (genetic program-

ming), ES (evolution strategies), EP (evolutionary programming),

LCS (learning classifier systems), GE (grammatical evolution), GEP

(gene expression programming), DE (differential evolution), etc.

The PDF file(s) are to contain the paper(s). The strongly preferred method

is that you send a separate PDF file for each of your paper(s) relating to

your entry. Both the text file and the PDF file(s) for each entry will be

permanently posted on a web page shortl y after the deadline date for

entries (for use by the judges, conference attendees, and anyone else

who is interested) and will remain posted on the web as a permanent

record of the competition. If your paper is only available on the pub-

lisher’s web site and your publisher specifically requires that your pub-

lished paper may appear only on your own personal page, the second

choice is that you send link(s) to a separate web page on your web site

containing link(s) to the PDF file(s) of the paper(s) that constitute your en-

try. This separate web page is to contain nothing else, so the interested

parties may quickly locate your paper(s). If you use this second-choice

option, you must ALSO supply a link to a permanent web site maintained

by your publisher where your specific paper may be viewed or purchased

(that is, not a link merely to the publisher’s general home page, but a

link to the specifi c web page containing your paper on the publisher’s

site). The objective, in each case, is to provide a permanent record of the

entries and to make it easy for anyone to locate the entries.

Generally, only one paper should be submitted. Note that this is a com-

petition involving a result that satisfies the criteria for being human-

competitive (not a competition involving an author’s entire body of work).

More than one paper should be submitted only if no one paper fully de-

scribes the result or methods.

The judging committee will review all entries and identify a short list of

approximately 6–10 finalists for presentation at the GECCO conference.

Finalists will be notified by an e-mail to the corresponding author. Please

acknowledge receipt of this message, so the judges know that you re-

ceived your notice. Finalists must then make a short oral presentation to

the judging committee at a public session of the GECCO conference. The

presentations will be held on one of the early days of the conference and

the winners will be announced a day or two later.

SIGEVOlution Volume 6, Issue 2 31

http://www.human-competitive.org

EDITORIAL

Finalists must submit their presentation (e.g., a PowerPoint, PDF) by

e-mail to koza at human-competitive dot org. All submissions will be

promptly acknowledged, so please make an inquiry if you do not receive

a prompt acknowledgment. These presentations will be added to the web

page for the competition.

At the GECCO conference, there will be 10-minute oral presentations by

the finalists to the judging committee. The presentations will be open to

all conference attendees at a special session of the conference. The oral

presentation should primarily focus on

why the result qualifies as being human-competitive and

why the judges should consider the entry as "best" in comparison to

other entries that may also be "human-competitive" since, as previ-

ously mentioned, these are the two main standards by which entries

will be judged by the judges.

In the short oral presentation to the judges, a description of the work

itself is decidedly secondary. By the time of the presentation the judges

will be familiar with the papers. Thus, the focus of the presentation is

on reasons why the work being presented should win a prize —– not an

explanation or presentation of the work itself. In the unlikely event that a

presenter is scheduled to make a presentation elsewhere at the GECCO

conference at the same time, pleas e notify the judging committee, so

they can rearrange time slots. After the oral presentations, the award

committee will meet and consider the presentations.

The presenting author for each entry must register for the GECCO con-

ference.

A judge will recuse himself or herself if he or she is closely associated

with a finalist (e.g., a current academic advisor, current collaborator, co-

author with the finalist of related work).

Additional information is at www.human-competitive.org

SIGEVOlution Volume 6, Issue 2 32

http://www.human-competitive.org

Calls and Calendar

April 2014

Evostar 2014 - EuroGP, EvoCOP, EvoBIO and EvoWorkshops

April 23-25, 2014, Granada, Spain

Homepage: www.evostar.org

EvoStar comprises of five co-located conferences run each spring at dif-

ferent locations throughout Europe. These events arose out of workshops

originally developed by EvoNet, the Network of Excellence in Evolution-

ary Computing, established by the Information Societies Technology Pro-

gramme of the European Commission, and they represent a continuity of

research collaboration stretching back nearly 20 years.

The five conferences include:

EuroGP 17th European Conference on Genetic Programming

EvoBIO 12th European Conference on Evolutionary Computation,

Machine Learning and Data Mining in Computational Biology

EvoCOP 14th European Conference on Evolutionary Computation in

Combinatorial Optimisation

EvoMUSART 3rd International Conference (and 12th European

event) on Evolutionary and Biologically Inspired Music, Sound, Art

and Design

EvoApplications 16th European Conference on the Applications of

Evolutionary and bio-inspired Computation including the following

tracks

● EvoCOMNET Application of Nature-inspired Techniques for

Communication Networks and other Parallel and Distributed

Systems

● EvoCOMPLEX Applications of algorithms and complex systems

● EvoENERGY Evolutionary Algorithms in Energy Applications

● EvoFIN Track on Evolutionary Computation in Finance and Eco-

nomics

● EvoGAMES Bio-inspired Algorithms in Games

● EvoHOT Bio-Inspired Heuristics for Design Automation

● EvoIASP Evolutionary computation in image analysis, signal

processing and pattern recognition

● EvoINDUSTRY The application of Nature-Inspired Techniques in

industrial settings

● EvoNUM Bio-inspired algorithms for continuous parameter op-

timisation

● EvoPAR Parallel and distributed Infrastructures

● EvoRISK Computational Intelligence for Risk Management, Se-

curity and Defense Applications

● EvoROBOT Evolutionary Computation in Robotics

● EvoSTOC Evolutionary Algorithms in Stochastic and Dynamic

Environments

Evo* Coordinator: Jennifer Willies, Napier University, United Kingdom

j.willies@napier.ac.uk

SIGEVOlution Volume 6, Issue 2 33

http://www.evostar.org
mailto:j.willies@napier.ac.uk

EDITORIAL

July 2014

GECCO 2014 - Genetic and Evolutionary Computation Conference

July 12-16, 2014, Vancouver, BC, Canada

Homepage: http://www.sigevo.org/gecco-2014

Workshop Submission Deadline March 28, 2014

The Genetic and Evolutionary Computation Conference (GECCO-2014)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

Workshop Submission Deadlines

Workshop Submission Deadline March 28, 2014

Decision Notification April 15, 2014

Camera-ready Submission April 25, 2014

Conference July 12-16, 2014

Organizers

General Chair: Dirk Arnold

Editor-in-Chief: Christian Igel

Local Chair: Elena Popovici

Publicity Chair: Christian Gagné

Tutorials Chair: Mengjie Zhang

Workshops Chair: Per Kristian Lehre

Competitions Chairs: Amy K. Hoover

Business Committee: Jürgen Branke

Darrell Whitley

EC in Practice Chairs: Thomas Bartz-Beielstein

Anna I Esparcia-Alcazar

Jörn Mehnen

Venue

Vancouver is a large and multicultural Canadian city with a distinctive

West Coast twist. Nestled between the sea and the mountains, it is a

vibrant city close to nature. The remarkable Stanley Park as well as the 22

km seawall, which offers unparalleled opportunities for walking, cycling,

and rollerblading, are in walking distance from downtown. The diversity

of the city’s restaurant scene is second to none. Vancouver has regularly

been ranked as one of the most livable cities worldwide and is a beautiful

destination to visit.

Travelling to Vancouver is easy and convenient, with direct flights from

many cities in North America, Europe, Asia, and Oceania, and a rail con-

nection between the airport and downtown (Canada Line). Visit Tourism

Vancouver Web site for more information.

The conference will be held at the Sheraton Wall Centre Vancouver. Lo-

cated in Downtown Vancouver’s shopping and entertainment districts, it

is within walking distance of the city’s best restaurants and most attrac-

tions.

More Information

Visit www.sigevo.org/gecco-2014 for information about electronic sub-

mission procedures, formatting details, student travel grants, the latest

list of tutorials and workshop, late-breaking abstracts, and more.

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.

SIGEVOlution Volume 6, Issue 2 34

http://www.sigevo.org/gecco-2014
http://www.tourismvancouver.com/
http://www.tourismvancouver.com/
http://www.sheratonvancouver.com/
http://www.sigevo.org/gecco-2014

EDITORIAL

2014 IEEE World Congress on Computational Intelligence

July 6-11, 2014, Beijing, China

Homepage: http://www.ieee-wcci2014.org/

The IEEE World Congress on Computational Intelligence (IEEE WCCI) is

the largest technical event in the field of computational intelligence.

IEEE WCCI 2014 will host three conferences: The 2014 International Joint

Conference on Neural Networks (IJCNN 2014), the 2014 IEEE Interna-

tional Conference on Fuzzy Systems (FUZZ-IEEE 2014), and the 2014 IEEE

Congress on Evolutionary Computation (IEEE CEC 2014). IEEE WCCI 2014

will engage in cross-fertilization among the three big areas and provide a

stimulating forum for scientists, engineers, educators, and students from

all over the world to discuss and present their research findings on com-

putational intelligence.

IEEE WCCI 2014 will be held in Beijing, the capital of the People’s Repub-

lic of China. Beijing is the nation’s political, economic, and cultural cen-

ter as well as China’s most important center for international trade and

communications. With the biggest central square in the world - Tianan-

men Square, the Forbidden City - the largest and best-preserved imperial

palace complex, a superbly preserved section of the Great Wall, as well

as the largest sacrificial complex in the world - the Temple of Heaven, Bei-

jing attracts both domestic and foreign visitors who all come to wonder

at its long history and unique cultural relics.

For more information visit http://www.ieee-wcci2014.org

August 2014

IEEE Conference on Computational Intelligence and Games

(CIG-2014)

August 26 - 29, 2014, Dortmund, Germany

Homepage: http://game.itu.dk/cig2010

Submission deadline: April 1, 2014

Conference: August 26 - 29, 2014

Games can be used as a challenging scenery for benchmarking methods

from computational intelligence since they provide dynamic and compet-

itive elements that are germane to real-world problems. This conference

brings together leading researchers and practitioners from academia and

industry to discuss recent advances and explore future directions in this

field.

The IEEE Conference on Computational Intelligence and Games is the

premier annual event for researchers applying computational and arti-

ficial intelligence techniques to games. The domain of the conference

includes all sorts of CI/AI applied to all sorts of games, including board

games, video games and mathematical games.

The yearly event series started in 2005 as symposium, and is a confer-

ence since 2009. An overview over the past CIG conferences is available

at hrefhttp://www.ieee-cig.orgwww.ieee-cig.org, where you also find the

proceedings. CIG 2014 will be hosted in the Park Inn hotel in the city

center of Dortmund, a vibrant, technology-oriented city in the Ruhr area,

Germany’s largest metropolitan area with around 5 million people.

Topics of interest include, but are not limited to:

Computational and artificial intelligence in:

● Video games

● Board and card games

● Economic or mathematical games

● Serious games

● Augmented and mixed-reality games

● Games for mobile platforms

SIGEVOlution Volume 6, Issue 2 35

http://www.ieee-wcci2014.org/
http://www.ieee-wcci2014.org
http://game.itu.dk/cig2010

EDITORIAL

Learning in games

Procedural content generation

Player/opponent modeling in games

Player affective modeling

Player satisfaction and experience in games

Computational and articial intelligence based game design

Intelligent interactive narrative

Theoretical or experimental analysis of CI techniques for games

Non-player characters in games

Comparative studies and game-based benchmarking

Applications of game theory

The conference will consist of a single track of oral presentations, tutorial

and workshop/special sessions, and live competitions. The proceedings

will be placed in IEEE Xplore, and made freely available on the conference

website after the conference.

General Chairs

Günter Rudolph, TU Dortmund, Germany

Mike Preuss, WWU Münster, Germany

Program Chairs

Mirjam Eladhari, University of Malta

Moshe Sipper, Ben-Gurion University of the Negev, Israel

Tutorials/Special Sessions Chair

Philip Hingston, Edith Cowan University, Perth, Australia

Competition Chair

Simon Lucas, University of Essex, UK

Keynote Chair

Gillian Smith, Northeastern University, Boston, USA

Proceedings Chair

Paolo Burelli, Aalborg University, Copenhagen, Denmark

Important Dates

Special session proposals: March 1, 2014

Tutorial proposals: April 1, 2014

Paper submission: April 1, 2014

Conference: August 26-29, 2014

For more information please visit: http://www.cig2014.de

September 2014

PPSN 2014 – International Conference

on Parallel Problem Solving From Nature

September 13-17, 2014, Ljubljana, Slovenia

Homepage: http://ppsn2014.ijs.si

Deadline: March 17, 2014

The 13th International Conference on Parallel Problem Solving from Na-

ture (PPSN XIII) will be organized by the Jožef Stefan Institute, Ljubljana,

Slovenia, and held at the Ljubljana Exhibition and Convention Centre

on September 13-17, 2014. The conference aims to bring together re-

searchers and practitioners in the field of Natural Computing. Natural

Computing is the study of computational systems that use ideas and get

inspiration from natural systems, including biological, ecological, phys-

ical, chemical, and social systems. It is a fast-growing interdisciplinary

field in which a range of techniques and methods are studied for deal-

ing with large, complex, and dynamic problems with various sources of

potential uncertainties.

SIGEVOlution Volume 6, Issue 2 36

http://www.cig2014.de
http://ppsn2014.ijs.si

EDITORIAL

Paper Presentation Following the well-established tradition of PPSN

conferences, all accepted papers will be presented during poster ses-

sions. Each session will contain several papers, and will begin by a

plenary quick overview of all papers in that session by a major re-

searcher in the field. Past experiences have shown that such pre-

sentation format led to more interactions between participants and to

deeper understanding of the papers. All accepted papers will be pub-

lished in the proceedings as a volume of the Lecture Notes in Com-

puter Science (LNCS) Springer series. The format should follow the LNCS

style (http://www.springer.de/comp/lncs/authors.html). Prospective au-

thors are invited to contribute their high-quality original results in the

field of Natural Computing as papers of no more than 10 pages.

General Chair

Bogdan Filipič, Jožef Stefan Institute, Slovenia

Honorary Chair

Hans-Paul Schwefel (Tech. Universität Dortmund, DE)

Program Co-Chairs

Thomas Bartz-Beielstein, Cologne University of Applied Sciences, Ger-

many

Jürgen Branke, University of Warwick, UK

Jim Smith, University of the West of England, UK

Tutorials Chairs

Shih-Hsi "Alex" Liu, California State University, Fresno, USA

Marjan Mernik, University of Maribor, Slovenia

Workshop Chairs

Evert Haasdijk, VU University Amsterdam, The Netherlands

Tea Tušar, Jožef Stefan Institute, Slovenia

Publication Chair

Jurij Šilc, Jožef Stefan Institute, Slovenia

Local Organizer

Gregor Papa, Jožef Stefan Institute, Slovenia

Important dates

Paper submission March 17, 2014

Author notification May 19, 2014

Camera-ready paper submission June 2, 2014

Early registration June 4, 2014

Conferencee September 13-17, 2014

SIGEVOlution Volume 6, Issue 2 37

http://www.springer.de/comp/lncs/authors.html

About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate to an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.

SIGEVOlution Volume 6, Issue 2 38

https://campus.acm.org/public/gensigqj/gensigqj_control.cfm?promo=QJSIG&offering=052&form_type=SIG
mailto:editor@sigevolution.org
http://www.sigevolution.org

