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Editorial

I
was not able to attend GECCO this year, but everybody told me it was as great as usual and I

am sure that all the people who attended it enjoyed it a lot! I had not spent the second week of

July in Milan since 2000, when I could not attend GECCO-2000 in Las Vegas. Thus, spending the

GECCO week at work while all my friends were enjoying themselves in Philly, has been kind of

weird. Indeed, I already checked the flights to Amsterdam and I plan to book a ticket soon. So I guess I

will see you at GECCO-2013!

Today, we start a brand new SIGEVOlution volume with a very nice cover and two even nicer articles. One,

by Soo Ling Lim and Peter J. Bentley, presents AppEco an artificial life framework that has been applied to

the modelling of a very well-known ecosystem, the Apple’s App Store. If you want to become a successful

developer for any mobile market, you should definitively read this article. AppEco appeared in the April

issue of the New Scientist (check the article here). The article published here is a reprint of the paper

presented at GECCO-2012 in July, with the permission of ACM. The next paper by William B. Langdon

describes an application of genetic programming to the long-term outcome prediction of breast cancer

using Emerald, a supercomputer containing 1008 x86 CPU cores and 372 nVidia M2090 Tesla GPUs. That’s

massive parallel EC!

The cover shows a graph from a study regarding the effect of app publicity using AppEco that Soo Ling

and Peter recently published in ALife XIII. Consider it an appetizer of what you might want to read after

you are done with the papers in this issue.

At the end, my due thanks go to the authors, Soo Ling Lim, Peter J. Bentley and William Langdon, the

board members, Dave Davis and Martin Pelikan, and to the friends who help me in this adventure.

Pier Luca

July 25, 2012
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How to be a Successful App
Developer: Lessons from the
Simulation of an App Ecosystem
Soo Ling Lim, Department of Statistical Science, University College London, s.lim@cs.ucl.ac.uk
Peter J. Bentley, Department of Computer Science, University College London, p.bentley@cs.ucl.ac.uk

App developers are constantly competing against each other to win more

downloads for their apps. With hundreds of thousands of apps in these

online stores, what strategy should a developer use to be successful?

Should they innovate, make many similar apps, optimise their own apps

or just copy the apps of others? Looking more deeply, how does a com-

plex app ecosystem perform when developers choose to use different

strategies? This paper investigates these questions using AppEco, the

first Artificial Life model of mobile application ecosystems. In AppEco,

developer agents build and upload apps to the app store; user agents

browse the store and download the apps. A distinguishing feature of

AppEco is the explicit modelling of apps as artefacts. In this work we use

AppEco to simulate Apple’s iOS app ecosystem and investigate common

developer strategies, evaluating them in terms of downloads received,

app diversity, and adoption rate.

1 Introduction

It pays to be an app developer. Some of the world’s most recent million-

aires made their money from mobile apps. For example, Ethan Nicholas

made his million from his iShoot app in less than a year [1]. Rovio, the de-

veloper of Angry Birds, made a revenue of $100 million in 2011 [2]. The

revenue generated from app sales is estimated to surpass $15 billion in

2011 and reach $58 billion by 2014 [3]. However, not all app developers

are so lucky. In fact, the majority of developers make little or no profit

from their apps. Reports suggested that 80% of paid apps in the Android

Market have been downloaded less than 100 times [4].

While such problems may be familiar to those in the music or publish-

ing industries, app ecosystems (comprising developers, users, and apps)

face challenges that are brand new to the software industry. App store

owners face the challenges of presenting the rapidly increasing app store

content to the users and encouraging users to download apps. App users

have difficulty in finding good apps amongst the vast number of alter-

natives. App developers find it increasingly difficult to make their apps

stand out among hundreds of thousands of other apps in the app store,

achieve downloads, and make profit.

Competition is so fierce and advertising space so congested that the

question of how to be a successful app developer is now on the lips of

thousands of programmers around the world. But which strategy is best?

One approach to answering this question might be to experiment with a

real app store: flood the store with thousands of new apps developed us-

ing specific strategies and measure their success. However, some strate-

gies, such as copying the apps of others, are difficult to try in the real

world. One developer faced a $12.5 million lawsuit for allegedly copying

a $3 beer-drinking novelty app that allows users to virtually drink a pint

by tilting their iPhone1. Consequently for this work we present an Arti-

ficial Life (Alife) agent-based model as an experimental tool to address

such questions. Alife methods have proven their worth with many previ-

ous simulations of ecosystems.

1 http://www.wired.com/gadgetlab/2008/10/indie-iphone-de/
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In this paper, we present AppEco, a model of app ecosystems. AppEco

models developers (agents that build apps) and users (agents that down-

load apps). It simulates the app store environment, which hosts and or-

ganises content created by the developers, and enables users to browse

and download apps.

Significantly, AppEco also models apps – artefacts produced by the de-

velopers and downloaded by users – and their features. AppEco allows

us to conduct experiments, test hypothesis about various processes in

the ecosystem, and ask “what if” questions, all of which are difficult if

not impossible to conduct in a real-world setting. Here, we use AppEco to

simulate Apple’s iOS app ecosystem and investigate common strategies

adopted by developers.

2 Background

While the study of mobile app ecosystems is a current and significant

topic for researchers, to date there has been little work focussing on the

topic [5; 6]. However there is much related work that contextualises and

informs our study. One area related to app ecosystems is the study and

prediction of app sales and usage. For example, Garg and Telang devel-

oped strategies to infer the current sales of an app based on its ranking

on Apple’s iOS App Store Top Apps Chart [7]. Such work may enable

investors to estimate likely profits should an app reach a specific rank,

however there is no certainty that a new app will appear on the chart.

Bohmer et al. developed a mobile app to collect mobile app usage in-

formation from over 4,100 users of Android devices [8]. Their research

revealed interesting app usage behaviours among the users. For exam-

ple, although users spend almost an hour a day using their phones, an

average session with an app lasts less than a minute. They also found

that news apps are most popular in the morning and games are at night,

but communication apps dominate through most of the day [8]. These

studies are informative, but they are limited to studying what is already

out there, and “what-if” questions cannot be answered.

In the fields of Alife, Evolutionary Computing and Agent-Based Simula-

tion, researchers have modelled various aspects of ecosystems such as

evolutionary dynamics within interacting populations. Classic works in

this area include studies by Axelrod and Hamilton on the evolution of co-

operation [9] and Maynard Smith and Price on conflicts between animals

of the same species [10].

Fig. 1: The interaction between developers, apps, and users in AppEco.

More recently, Holland created Echo, a generic ecosystem model in which

evolving agents are situated in a resource-limited environment [11].

Pachepsky et al. investigated the effect of ecological interactions be-

tween organisms on the evolutionary dynamics of a community [12].

There are also a growing number of studies on the emergent effects of

human interaction at the population level. For example, Kohler et al. used

models to understand the environmental and social factors that led to the

disappearance of the Puebloan peoples of the North American Southwest
[13]. Lux and Marchesi showed that the scaling of financial prices arises

from interactions between a large number of market participants [14].

App stores have large populations of apps, developers, and users, and

can benefit from similar studies.

Indirect interaction through mechanisms such as stigmergy is commonly

studied by Alife researchers. In human society different kinds of objects

and tools are often built, adopted, shared and used to support people

in their work [15]. It is common for such artefacts to become media for

communication (e.g., books, music, and software). One study relating

to this topic is the use of robots to create music. In this work, Miranda

developed a group of interactive autonomous singing robots that imitate

each other to create music [16]. Despite such studies, which often fo-

cus on the evolution of human culture with reference to artefacts [17],

there is a lack of models that study the development and consumption of

artefacts by agents, and how the success of the artefact depends on the

preferences of the agents.
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3 AppEco

In an app ecosystem, coevolving systems of apps, developers, and users

form complex relationships, filling niches, competing and cooperating,

similar to species in a biological ecosystem [6]. The health of the app

ecosystem is largely determined by the communities of developers that

create innovative solutions that users want to buy [5; 18]. In an app

ecosystem, application software (such as games, medical applications,

and productivity tools) that is built for a mobile platform is sold via an app

store running on the platform. The app store concept has democratised

the software industry – almost anyone can build and sell apps. Once

built, an app quickly becomes available to a worldwide market. Mobile

device users can download the apps, use them immediately and provide

feedback to the developers.

AppEco is an Artificial Life simulation of mobile app ecosystems. The

model consists of agents that are abstractions of app users and develop-

ers, as well as artefacts that are abstractions of apps. Developer agents

build and upload apps to the app store; user agents browse the store and

download the apps, see Figure 1. Each download corresponds to a new

sale. A distinguishing feature of the AppEco model compared to more tra-

ditional agent-based models is the explicit modelling of artefacts as well

as the agents that produce and use the artefacts. Different from agents,

artefacts are not autonomous, they represent passive entities of the sys-

tem that are intentionally created and used by agents [15]. App artefacts

are important in a model of an app ecosystem because the agents inter-

act with one another via the apps.

4 AppEco Components

AppEco consists of app developers, apps, users, and the app store. Each

component is described as follows.

4.1 Developers

In AppEco, a developer agent represents a solo developer or a team of de-

velopers working together to produce an app. Each developer agent has

a development duration (devDuration, a random value between [devmin,

devmax]), which specifies the number of days it needs to build an app.

Each developer also records the number of days it has already spent

building the app (daysTaken).

Each developer is initially active (it continuously builds and upload apps

to the app store) but may become inactive (it stops building apps) with

probability PInactive. This enables the modelling of part-time developers,

hobbyists, and the tendency of developers to stop building apps2. Every

developer records the number of apps it has already developed and the

number of downloads it has received.

Each developer uses one of the following strategies to build apps:

S0 Innovator: Builds an app with random features each time. This

strategy models innovative developers. For example, iOS developer

Shape Services produces different apps in a variety of categories

such as social networking, business, utilities, and productivity3.

S1 Milker: Makes a variation of own most recent app each time.

This strategy models developers who “milk” a single app idea re-

peatedly. An extreme example is Brighthouse Labs which produced

thousands of similar apps4, such as an app to provide news for each

region in each country, and an app about each sports team for each

sport.

S2 Optimiser: Makes a variation of own best app each time. This

strategy models developers who learn from downloads and improve

on their best app. For example, Rovio developed many game apps

before hitting the jackpot with Angry Birds. They then built on their

success, releasing new apps such as Angry Birds Seasons, and Angry

Birds Rio5.

S3 Copycat: Copies an app in the Top Apps Chart. This strategy

models developers who are less creative but want to achieve many

downloads quickly. Angry Chickens and Angry Dogs are two example

copycats of Angry Birds6.

S* Flexible: Developers begin with one of the strategies S0-S3.

Each developer then has a 0.99 probability to randomly select an

app from the Top Apps Chart and change strategy to be the same as

the developer of the selected app. There is a 0.01 probability that a

strategy is randomly selected.

2 http://t-machine.org/index.php/2009/06/11/may-2009-survey-of-iphone-

developers/
3 http://www.shapeservices.com/
4 http://isource.com/2009/05/27/app-store-hall-of-shame-brighthouse-labs/
5 http://www.wired.co.uk/magazine/archive/2011/04/features/how-rovio-

made-angry-birds-a-winner
6 http://techcrunch.com/2011/12/06/can-we-stop-the-copycat-apps/
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These strategies are abstracted after consultation with app literature and

developers. Few app developers perform market research before devel-

oping.

4.2 Apps

Each app artefact is built and uploaded by a developer agent. The fea-

tures of the app are abstracted as a 10x10 feature grid (F) for each app.

If a cell in F is filled, then the app offers that particular feature. A grid

is used so that feature similarity can be represented in the future, e.g.,

features that are similar can be represented as cells that are near to one

another on the grid. For ranking purposes, each app keeps a record of

the total number of downloads it has received to date and the number of

downloads it has received on each of the previous seven days. For sim-

plicity, the model currently assumes that all apps are sold at the same

price; the model of variations in app pricing and categories of apps is left

for future work. Each app also records the time when it is being uploaded.

The app feature grid F is filled depending on the strategy used by the

app’s developer:

S0: The cells in F are filled probabilistically, such that each cell in

the grid has a probability PFeat of being filled.

S1: The cells in F are filled probabilistically as in S0 if this is the

developer’s first app. Otherwise, the developer copies the features

of his own latest app with random mutation.

S2: The cells in F are filled probabilistically as in S0 if this is the

developer’s first app. Otherwise, the developer copies the features

in his own best app (as determined by the highest daily average

downloads) with random mutation. The choice of which app to copy

occurs when the developer is starting to build the app. If no apps by

this developer have downloads, the developer just copies his most

recent app.

S3: An app is randomly selected from the Top Apps Chart and its

features are copied with random mutation. The choice of app to

copy occurs when the developer is starting to build the app. There

is a 0.5 probability that mutation occurs during a copy. Mutation is

implemented by randomly selecting a filled cell in F and randomly

”moving” it to an empty cell in F.

4.3 Users

Inspired by the recommender systems literature [19], each user agent

has preferences (or taste information) that determine the app features

that it prefers. The preferences of a user agent are abstracted as a 10×10

preference grid (P). The cells in P are filled probabilistically, such that

each cell in the grid has a probability PPre f of being filled. If a cell in P is

filled, then the user agent desires the feature represented by that cell. If

the feature grid F of an app has a cell in the same location filled, then it

means the app offers a feature desired by the user agent. For example, in

Figure 2, all four of the features offered by App 1 match the user agent’s

preferences, but only two of the features offered by App 2 match the user

agent’s preferences. For simplicity, preference matching is binary: filled

cells either match or do not match. The top right quadrant in P is always

empty in order to model some features that are undesirable to all users,

see Figure 2. For example, no users want an app to have the features of a

difficult-to-use or malicious program. Using the AppEco model, a popular

app such as Angry Birds can be abstracted as an app with F that matches

P of many users, while a less popular app has F that matches few or no

users’ P. The developers are unaware of the users’ preferences.

Finally, a user agent keeps a record of the apps it has downloaded, the

number of days between each browse of the app store (daysBtwBrowse,

a random value between [bromin, bromax]), and the number of days that

have elapsed since it last browsed the app store (daysElapsed). daysE-

lapsed is recorded so that the user agent knows when to browse the app

store next. When users are initialised, daysElapsed is set to be a random

number between [0, daysBtwBrowse] so that users don’t all browse at

the same time when they start.

4.4 App Store

The app store is the environment used by the agents to store and access

apps. Its primary function is to provide a shop front for users and en-

able them to locate and download apps that match their preferences. To

achieve this, it provides three browsing methods: the Top Apps Chart,

the New Apps Chart, and Keyword Search. These three methods are

modelled because they are common to many app stores, such as iOS,

Android, and BlackBerry. The Top Apps Chart ranks apps based on the

number of downloads the apps have received. The New Apps Chart dis-

plays new apps that have recently been uploaded by developer agents;

only a small subset of new apps is chosen for this chart.
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Fig. 2: Matching app features with user preferences.

Fig. 3: The AppEco algorithm.

Keyword Search returns a list of apps that match the keyword entered by

the user agent. In AppEco, Keyword Search is abstracted as a random

search for a random number of apps. It is implemented in this way be-

cause keywords may not correspond to features, so a matching keyword

does not mean the app has desirable features for the user.

5 AppEco Algorithm

The AppEco algorithm models the daily interactions between the AppEco

components described in the previous section. Each timestep in the al-

gorithm represents a day in the real ecosystem.

Inspired by the ecology literature [20; 21], the population growth of user

and developer agents is modelled using a sigmoid growth function com-

monly used to model the population growth in natural systems. The

equation models the growth rate of user and developer agents in an app

ecosystem declining as their population density increases, with the size

of the ecosystem limited by the market share of the mobile platform. The

population size at timestep t, popt , is defined by,

popt = MinPop+
(MaxPop−MinPop)

1+ eS∗t−D (1)

where MinPop is the minimum population, MaxPop is the maximum

population, S determines the slope of the growth curve (S is negative

for a growth curve), and D shifts the curve from left to right. Differ-

ent growth formulas can be used to model different ecosystems [20;

21].

The AppEco algorithm, see Figure 3, is detailed as follows.

Initialise ecosystem. This step launches AppEco with the population of

developer and user agents as defined in Eq. 1, with timestep t = 0. It is

common for app stores to have apps before it is opened. For example,

the iOS App Store had 500 apps the day it was launched7. As such, this

step also creates an initial number of app artefacts (NInitApp). The devel-

opers of these initial apps are randomly selected from the pool of initial

developers of strategy S0, S1 or S2 (S3 waits for apps to be on Top Apps

Chart before it builds apps). The attributes of initial developers, apps,

and users are set as described in the previous section.

7 http://www.apple.com/pr/library/2008/07/10iPhone-3G-on-Sale-

Tomorrow.html
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Developer agents build and upload apps. For each active developer,

daysTaken is incremented by 1. If daysTaken exceeds this developer’s

devDuration, the app is completed. The developer then uploads the app

to the store, resets daysTaken to 0, and decides on the next app to build.

The feature grid F of the app is set depending on the developer’s strategy.

Update app store. The New Apps Chart is updated. When timestep

t = 0, the New Apps Chart consists of a random selection of initial apps.

In each following timestep, each new app has a probability POnNewChart of

appearing on the New Apps Chart. Apps are randomly selected here be-

cause the selection criteria are not the focus of this work and real app

stores do not reveal how they select apps for the New Apps Chart. The

maximum number of apps in the chart is defined by NMaxNewChart . As

newly selected apps are added to the chart, older apps appear lower

in the chart and are no longer listed when their position exceeds the

chart size. The Top Apps Chart is also updated. When timestep t = 0, the

Top Apps Chart is empty because no apps have been downloaded yet.

In each following timestep, apps are ranked in the order of decreasing

score, calculated as 8*D1+5*D2+5*D3+3*D4 where Dn is the number of

downloads received by the app on the nth day before the current day
[22]. The maximum number of apps in the Top Apps Chart is defined by

NMaxTopChart .

User agents browse and download apps. For each user, daysElapsed

is incremented by 1. If daysElapsed exceeds daysBtwBrowse, then the

user browses the app store, and resets daysElapsed to 0. The user

browses the New Apps Chart and the Top Apps Chart, and conducts Key-

word Search (which returns a random number of apps between [keymin,

keymax]). The user browses each app that it has not previously down-

loaded: the feature grid of the app is compared with the preference grid

of the user. If all the features offered by the app match the user’s pref-

erences, then the user downloads the app. For example, in Figure 2, the

user downloads App 1 but not App 2.

Increase agent population. This step increases the number of user

and developer agents in the ecosystem for the next timestep, using Eq. 1.

AppEco is implemented in C++ and the code can be requested from the

authors via email. It is developed to be highly configurable so that it can

simulate various app ecosystems, such as iOS, Android, and BlackBerry.

6 Experiments

In order to investigate the effects of developer strategies in AppEco, we

must first calibrate the simulation to match, as much as is feasible, the

behaviour of a real app store. We select Apple’s iOS App Store for our

experiments, as it is one of the oldest and most established app stores.

The calibration of AppEco to the iOS App Store is described in Section 6.1.

We then investigate how different developer strategies affect individual

and collective success in AppEco. Two experiments are conducted. Ex-

periment 1 (E1) in Section 6.2 investigates the success of each individual

strategy S0, S1, S2, and S3. Experiment 2 (E2) in Section 6.3 investigates

the more realistic scenario of competing strategies by having developers

select their own strategies over time. Thus in E2, developers have strat-

egy S*, and the overall success of the App Store is compared against

E1.

6.1 Calibrating AppEco for iOS

We collected the following iOS data over a period of three years, from the

start of the iOS ecosystem in July 2008 (Q4 2008) until the end of June

2011 (Q3 2011):

Number of iOS developers. The number of iOS developers is

based on the number of worldwide iOS developers month over

month compiled by Gigaom8.

Number of iOS apps and downloads. The number of apps and

downloads is based on statistics provided in Apple press releases

and Apple Events9. For example, in the Apple Special Event on 9th

September 2009, Apple CEO Steve Jobs announced the App Store

to reach 75,000 apps and 1.8 billion downloads, and Apple’s press

release on 28th September 2009 announced that the App Store has

achieved more than 85,000 apps and 2 billion downloads10.

8 http://gigaom.com/apple/infographic-apple-app-stores-march-to-500000-

apps/
9 http://www.apple.com/apple-events/

10 http://www.apple.com/pr/library/
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[PopminUser, PopmaxUser] [1500, 40000] [devmin, devmax] [1, 180]

DUser -4.0 PPre f 0.45

SUser -0.0038 PFeat 0.04

[PopminDev, PopmaxDev] [1000, 120000] POnNewChart 0.001

DDev -4.0 NMaxNewChart 40

SDev -0.005 NMaxTopChart 50

NInitApp 500 PInactive 0.0027

[bromin, bromax] [1, 360] [keymin, keymax] [0, 50]

Tab. 1: Constant Values Resulting from iOS Calibration.

Number of iOS users. The number of iOS users is based on the

number of iOS devices (iPod Touch, iPhone, and iPad) sold by Apple

over time. The sales figures are available from Apple’s quarterly

financial data11, and for simplicity the calculation assumes that each

user has one iOS device.

We calibrated AppEco to simulate the iOS app ecosystem. Table 1 sum-

marises the calibrated values for the system constants. Most constants

were set from publicly available data. For example, the total number

of people in the world who use mobile devices is approximately 4 bil-

lion [23]. According to the International Data Corporation (IDC), Apple

had 2.8% of the mobile device market share in Q1 2010 and 5% in Q1

201112. By assuming a maximum increase of market share to be 10%,

our calculation gives us a PopmaxUser of 400 million users. In order to

match (curve-fit) the iOS user and developer growth rates, values such

as D and S for users and developers were determined through tuning ex-

periments. To ensure that the system is computationally feasible, one

app represents one real app, and one developer agent represents one

real developer, but one user agent represents 10000 real users. This is

because it is computationally infeasible in terms of memory to simulate

hundreds of millions of users.

Figure 4 illustrates the actual and simulated number of users, developers,

apps, and downloads. As can be seen, the behaviour of AppEco closely

resembles the behaviour of the iOS ecosystem, including emergent rates

such as the number of apps and downloads.

11 http://www.apple.com/pr/library/
12 http://www.idc.com/getdoc.jsp?containerId=prUS22808211

Fig. 4: Actual vs. simulated number of iOS users, developers, apps, and down-

loads (blue is actual, red is simulated).

A run of the simulation takes approximately 16 seconds CPU time on

a MacBook Air with a 1.8GHz Intel Core i7 Processor and 4GB of 1333

MHz DDR3 memory. After three years (1080 timesteps assuming 30

days a month), the model typically contains more than 100,000 devel-

oper agents, 500,000 apps, 20,000 user agents (corresponding to 200m

real users), and 1.5 million downloads (corresponding to 15bn real down-

loads).

6.2 E1: Comparing Strategies

In a mobile app ecosystem, developers compete with each other to earn

more downloads. Some developers try many different ideas, some pro-

duce many similar apps, some gain experience from their previous suc-

cessful apps, and some copy successful apps created by other develop-

ers. To learn how each strategy performs relative to one another, we ask

the following research questions:
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RQ1: Which developer strategy enables individual developers to be

most successful?

RQ2: What is the diversity of apps produced by each strategy?

RQ3: Which developer strategy enables the developer to become

more successful as they develop more apps?

To answer RQ1, the following measurements are used.

Average Downloads per App (AvgDl): For each strategy S0 to S3,

AvgDl is the total number of downloads received by the developers of

the strategy, divided by total number of apps built by the developers of

the same strategy.

Top 20 Total Downloads (Top20TotDl): The developers of all strate-

gies are ranked based on the total number of downloads they received.

For each strategy S0 to S3, Top20TotDl is the proportion of developers in

the top 20 of this list that belong to the current strategy.

Top 20 Average Downloads (Top20AvgDl): The developers are

ranked based on the average number of downloads they received per

app. For each strategy S0 to S3, Top20AvgDl is the proportion of devel-

opers in the top 20 of this list that belong to the current strategy. De-

velopers can receive more total downloads by building more apps – this

measure identifies efficient developers who have many downloads with

few apps.

Zero Downloads (ZeroDl): For each strategy S0 to S3, ZeroDl is the

proportion of developers that belong to the current strategy who have

received no downloads for any of their apps so far.

To answer RQ2, the Feature Coefficient of Variation (FeatCV) is used to

measure the app coverage of features that are desired by users. For each

cell in the desired region of feature grid F, we calculate the number of

apps that offer that feature, forming a combined feature grid FC. FeatCV

is the coefficient of variation of grid FC. FeatCV is defined in Eq. 2 and

expressed as a percentage.

FeatCV = σ/µ (2)

where σ is the standard deviation and µ is the mean of values in grid

FC. In this simulation, the user preference coefficient of variation in the

desired region of F is 0.68%, indicating that the mean preferences for

the user population are evenly distributed over the mean FC feature grid.

As such, a good strategy should have a low FeatCV, which means that

all the apps have features that cover the desired region in F evenly (in

combination they better meet all the users’ needs).

To answer RQ3, we measure the Fitness of each strategy as its devel-

opers gain more experience in app development. For each strategy, we

categorised the apps into classes corresponding to their developers’ first

apps, second apps, third apps, and so on. These correspond to the apps

created by the developers at experience level 1, 2, 3, and so on. For each

app, we "survey" the users and ask if they would download the app: if all

the features in the app match the user’s preferences then they would

download the app. For each strategy, the Fitness of the strategy at expe-

rience level L is defined in Eq. 3.

FitnessL =
AvgDlL

NumUsers
(3)

where AvgDlL is the number of potential downloads as reported by users

in the survey for all the apps in experience level L divided by the number

of apps in L, and NumUsers is the number of users who participated in the

survey. FitnessL ranges from 0 to 1. The higher the value, the fitter the

strategy.

AppEco was run with the settings described in Section 6.1. Throughout

each run, developers in the ecosystem were randomly assigned strate-

gies S0, S1, S2 or S3 in equal proportions to enable direct comparison of

relative performance. AppEco was run for 1080 timesteps (correspond-

ing to three years in the real world, assuming 30 days a month). The

experiment was repeated 100 times. The results were averaged over the

100 runs.

RQ1: Which developer strategy enables individual developers to

be most successful? As can be seen in Table 2, the Copycat strategy

S3 is the most successful, receiving the highest AvgDl, Top20TotDl and

Top20AvgDl, and the lowest ZeroDl. (The success of Copycats is well

known in the real world – several Copycats who have parasitised Angry

Birds have risen high in the Top Apps Chart13.) Although the Innovator

strategy S0 performed the worst with the lowest AvgDl and Top20TotDl,

it has a lower number of developers with zero downloads (ZeroDl) com-

pared to strategies S1 and S2. This is because by randomly trying differ-

ent ideas for apps, creative S0 avoids dwelling on ideas that do not work,

unlike S1 Milker and S2 Optimiser that keep working on similar apps.

13 http://techcrunch.com/2011/12/06/can-we-stop-the-copycat-apps/
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S1 Milker has the lowest Top20AvgDl, illustrating that a strategy that pro-

duces many similar apps results in poor performance. (In the real App

Store this strategy is also heavily criticised by other developers and users

for its exploitative approach14.)

Studies of individual runs show that although S3 Copycat dominates the

top developers lists, individual developers from other strategies can be-

come the most successful developer in the ecosystem, achieving either

the highest number of downloads or the highest average downloads per

app. However, the occurrence is by chance: the developer has to build

the right app at the right time (e.g., the app has features preferred by

many users, appears on the New Apps Chart, is downloaded by many

users, appears on the Top Apps Chart, and continues to attract down-

loads). Developers with high Top20AvgDl tend to develop one app in the

entire three years. This shows that it is difficult to repeat success (a fact

well-known to app developers in the real world15). The more apps a de-

veloper builds, the lower the average downloads tends to be. As such,

the same developers rarely appear on both average and top downloads

lists. In many runs, we observe that developers who built many apps

can have the highest total number of downloads, but often have a low

average.

RQ2: What is the diversity of apps produced by each strategy?

Developers who use the S0 Innovator strategy offer the most even cov-

erage of features. Despite being the most successful strategy in terms

of downloads, S3 Copycat has the highest FeatCV, which suggests that

it only partially covers the preference space of users. Analysis shows

that S3 produces an average of about 1 feature per app, while the other

strategies have an average of 4 features per app.

This is because users only download an app when all the features of the

app matches their preference, and as a result apps with fewer features

will have a higher chance to be downloaded by many users and appear

on the Top Apps Chart. Since S3 Copycat copies from Top Apps Chart, the

Copycat developers are likely to copy apps with very few features. (This

is consistent with the advice from successful app developers – apps with

fewer features have a higher chance of being downloaded16.)

14 http://isource.com/2009/05/27/app-store-hall-of-shame-brighthouse-labs/
15 http://www.fastcompany.com/1792313/striking-it-rich-in-the-app-store-for-

developers-its-more-casino-than-gold-mine
16 http://www.fastcompany.com/1792313/striking-it-rich-in-the-app-store-for-

developers-its-more-casino-than-gold-mine

To investigate further, we group the apps by the experience level of their

developers when the apps are built. We aggregate the features of the

apps with the same strategy and experience level. We find that the cov-

erage of features using S3 Copycat is worse than other strategies indi-

cating that developers following this strategy are not satisfying as many

users’ needs (Figure 5). In contrast, the developers using S2 Optimiser

correctly avoid the top right corner as they become more experienced,

while also consistently covering the features desired by the users.

RQ3: Which developer strategy enables the developer to become

more successful as they develop more apps? The only strategy that

shows clear improvement as the developers become more experienced

is S2 Optimiser. While S3 Copycat is the clear winner in terms of down-

loads, developers using the strategy are plagiarising the work of other

developers rather than improving their own work. In S2 developers re-

lease new apps based on mutated copies of their most successful apps.

As such this is similar to a (1 + λ) Evolutionary Strategy. Figure 6 illus-

trates that among the four strategies, S2 shows a classic evolutionary

curve. This demonstrates that developers who improve their own apps

based on download feedback should increasingly meet the needs of the

users. In addition, among all four strategies, S2 also offers the highest

number of features desired by the users.

6.3 E2: Ecosystem Health

In real life, there are no fixed strategies. Developers can choose the strat-

egy they want to use. With all developers free to choose, the strategies

directly compete with each other in the ecosystem. If a strategy were

more effective then it might quickly dominate all others; less effective

strategies might become a tiny minority. However, in many ecosystems,

individual success is not always reproducible for many [9]. It is there-

fore of great interest to study how the number of developers using each

strategy varies over time. Our research questions are thus:

RQ4: When strategies compete, how often is each strategy chosen

by developers?

RQ5: What is the diversity of apps produced?

RQ6: Is an app ecosystem that comprises competing strategies able

to improve its performance in the long term?
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AvgDl Top20TotDl Top20AvgDl ZeroDl FeatCV

S0 Innovator 1.18 (0.14) 3.85% (4.20%) 9.10% (5.52%) 26.51% (0.23%) 1.40% (0.13%)

S1 Milker 1.19 (0.14) 5.95% (5.16%) 8.80% (6.52%) 32.85% (0.26%) 4.27% (0.35%)

S2 Optimiser 1.41 (0.15) 7.40% (6.05%) 9.25% (7.30%) 32.90% (0.27%) 6.50% (0.62%)

S3 Copycat 8.22 (0.41) 82.80% (8.30%) 72.85% (10.03%) 7.74% (0.23%) 54.36% (6.78%)

Tab. 2: Results for RQ1 and RQ2 (Std. Dev. in brackets).

Proportion of Developers Standard Deviation

S0 Innovator 33.51% 19.74%

S1 Milker 26.57% 17.17%

S2 Optimiser 29.26% 18.94%

S3 Copycat 10.67% 7.65%

Tab. 3: Proportion of Developers at timestep t = 1080 (RQ4).

To answer RQ4, we measure the proportion of developers using each

strategy over time. To answer RQ5, we use FeatCV (Eq. 2) on the aggre-

gated app features in E2 and compare the results with the aggregated

app features in E1. To answer RQ6, we use the Fitness measure (Eq. 3)

on E2 and compare the outcome with E1. AppEco was run with the set-

tings described in Section 6.1, with all developers initialised with Flexible

strategy S*. E2 was also run for 1080 timesteps and repeated 100 times.

The results were averaged over the 100 runs.

RQ4: When strategies compete, how often is each strategy cho-

sen by developers? The choice of strategy depends on the propor-

tion of other strategies in the population, but S3 Copycat is the least fre-

quently chosen strategy (Table 3), despite appearing to be the best strat-

egy from E1. When developers have a choice, very quickly the Copycat

strategy is dropped in favour of the other strategies. As is evident from

Table 3, strategy S0 Innovator is the most popular choice, followed by S2

Optimiser and then S1 Milker. However, the standard deviations for S0,

S1 and S2 are very high, indicating that the percentage of developers

from those strategies differs greatly in different runs (Table 3).

Indeed, studies from individual runs reveal that while S3 Copycat con-

sistently falls quickly to 10% of the developer population, the winning

strategies fluctuate unpredictably, at times with S0 Innovator, S1 Milker

or S2 Optimiser each dominating the population, see Figure 7. It is in-

teresting to note that the two most widely hated strategies in real life:

S1 Milker and S3 Copycat, appear to be used the least in the ecosystem,

with S3 Copycat clearly in the minority. To assess whether S3 could ever

become widely adopted, we repeated E2 by only allowing developers to

change strategies after 2 months in order to give S3 more opportunity to

work. There was no change to the result: S3 again becomes unpopular.

Even when E2 is repeated with 50% developers using S3 Copycat, most

developers subsequently avoid choosing S3.

In fact, in E2, the only way to guarantee that S3 will dominate the ecosys-

tem is to force developers not to change strategies until after 1 year, by

which time there are plenty of good apps to copy.

This demonstrates that S3 is only viable as a minority strategy in a

healthy ecosystem. Copycats rely on good apps created by other strate-

gies; it is extremely difficult for an ecosystem to support a large propor-

tion of Copycats. The result mirrors the app stores in the real world —

Copycat developers regularly appear and take advantage of the success

of others, but nevertheless their strategy remains in the minority.

RQ5: What is the diversity of apps produced? When developers can

choose their strategy, the app ecosystem has a higher diversity of apps.

E1 resulted in a FeatCV of 6.28% with a standard deviation of 0.72%; E2

resulted in FeatCV of 2.87% with a standard deviation of 2.33%.
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Fig. 5: Heat maps for one run showing total app features over experience level.

Fig. 6: Fitness of a strategy as its developers become more experienced. Later

data is more sparse as fewer developers create large number of apps,

resulting in more noise.

Fig. 7: Proportion of developers in two example runs.

Fig. 8: Fitness as developers become more experienced.
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This shows that in E2, the apps evenly cover the users’ preference space.

Analysis of all features for E1 and E2 shows that E2 has a more evenly

distributed feature set. This means that in E1, users may find that the

app store does not have any apps that meet some of their preferences.

RQ6: Is an app ecosystem that comprises competing strategies

able to improve its performance in the long term? When we plot

total fitness against developer experience level, there is a clear improve-

ment evident for the more realistic ecosystem where developers are free

to choose their strategies. Figure 8 illustrates that the developers in E2

improve more as they become more experienced, indicating that flexi-

ble developers who are not all locked into one development strategy will

collectively perform better as they develop more apps.

7 Conclusions

It is the dream of many developers to make their fortune with a clever

app. But when the chances of success are now similar to the chances

of winning the lottery – and falling daily as new apps are released – how

can anyone be a successful app developer? In this work, we presented

AppEco, an Artificial Life agent-based model that simulates app ecosys-

tems, and investigated these issues. AppEco models developers (agents

that build apps) and users (agents that download apps). It simulates the

app store environment and the population growth of the agents and apps.

Significantly, AppEco also models apps (artefacts produced by the devel-

opers and downloaded by users) and their features. AppEco is a complex

ecosystem where developers, users and apps increase continuously, and

interaction strategies may continuously change. Our experiments inves-

tigated different developer strategies: Innovators, Milkers, Optimisers,

and Copycats.

In a complex ecosystem no strategy can be a guaranteed winner, but our

results indicate that some strategies should be chosen more frequently

than others. Innovators produce diverse apps, but they are hit or miss –

some apps will be popular, some will not. Milkers may dwell on average

or bad apps as they churn out new variations of the same idea. Opti-

misers produce diverse apps and tailor their development towards users’

needs. Finally, Copycats may seem like the best strategy to guarantee

downloads in an app ecosystem, but the strategy can only work when

there are enough other strategies to copy from.

In addition, this strategy can only exist in a minority, otherwise app di-

versity will decrease (many duplicated apps result in a scarcity of some

features desired by users) and the fitness of the ecosystem will suffer.

This study is one of many we will be undertaking with AppEco. We plan

to study the effect of publicity on app downloads, and understand how

a user might best locate desirable apps and communicate their require-

ments and feedback about the apps to developers, and how these feed-

back can influence app development. AppEco can also be calibrated to

study other app ecosystems, such as Android and Blackberry, and ex-

tended to model web-based platforms such as Facebook and Chrome.
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Distilling GeneChips with GP on the
Emerald GPU Supercomputer

William B. Langdon, CREST Centre, Department of Computer Science,
University College London, W.Langdon@cs.ucl.ac.uk

The Emerald supercomputer contains 1008 x86 CPU cores and 372 nVidia

M2090 Tesla. A CUDA GPGPU genetic programming GeneChip datamining

application which searches for non-linear gene expression based predic-

tion of long term survival following breast cancer surgery was transferred

without change and run on part of the Emerald cluster. An average of

33 giga GPopS−1 was achieved.

1 Introduction

The Emerald super computer has recently been installed. It contains 372

top-end nVidia Tesla GPU processors (see Figure 1). I will report perfor-

mance of an existing genetic programming breast cancer long term out-

come prediction data mining application [5] on Emerald.

Emerald is shared by the UK Science and Technology Facilities Council

(STFC) and four UK universities (Oxford, Bristol, Southampton and UCL).

The next section summarises the existing GPGPU ten year tumor appli-

cation. Then Section 3 shares some initial experiences of Emerald. This

is followed by world beating performance results from it (Sections 4). In

Section 5, I discuss problems with file access and allocating GPU Tesla to

jobs.

2 Predicting Breast Cancer Long Term Survival

For three years (1987–1989) samples were taken from most of the

women who underwent surgery for breast tumours in Uppsala in south-

ern Sweden. The biopsies were subsequently measured using Affymetrix

GeneChips [9] generating more than a million data points for each of

the 251 patients. We obtain these gene expression data via NCBI’s

GEO, checked them for spatial errors, quantile normalised them [6; 2]

and then used genetic programming [11] to datamine them eventu-

ally yielding a small predictive model [5]. (The normalised data are

now available via http://groups.csail.mit.edu/EVO-DesignOpt/GP Bench-

marks/uploads/Main/GSE3494/).

The original genetic programming work used an nVidia GeForce 8800 GTX

graphics processing unit (GPU) (with 128 stream processors) and Rapid-

Mind C++ software. (In total Emerald has 190 464 stream processors.)

The RapidMind software was recently rewritten in nVidia’s CUDA and the

original experiments re-run on a C2050 Tesla GPU donated by nVidia [3]

(code available via FTP). The C2050 code has been run without modifica-

tion on Emerald.

The genetic programming approach [4] is somewhat unusual in that in-

stead of trying to solve the datamining problem in one go it uses several

phases in which multiple independent GP runs are used to select which

of the gene expression variables convey enough information to be useful

in evolving a final non-linear predictive model of breast cancer survival.

(The models are quite small, on average they contain only 12.9 compo-

nents.)
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Fig. 1: Schematic of Emerald GPU supercomputer. Each node consists of 6 twin-

core CPU (squares), local disk and 3 or 8 nVidia Tesla M2090 GPUs each

containing 512 stream processors. All 84 cluster nodes are connected by

QDR Infiniband with Mellanox switches in a fat-tree topology to a 135000

GBytes Panasas storage system.

Our goal was simply to demonstrate re-running this approach on Emer-

ald. Other experiments might use different numbers of phases and dif-

ferent numbers of independent runs in each phase.

For the breast cancer data there are three phases (see Figure 2). The first

two phases each consist of 100 independent runs, each with a population

of 5 million non-linear breast cancer predictors evolved from generation

zero to generation ten using the data from 91 women for fitness train-

ing to select good gene expression models. In each GP run all 5.2 billion

fitness tests are done on the GPU (taking a total of about ten seconds).

The other operations remain on the host (although these too might in fu-

ture be run on the GPU). Calculating fitness (before GPUs) used to totally

dominate run time. Now operations which used to be a trivial part of the

total time are significant and often the host operations take four or five

times as long as those on the GPU.

At the end of each run in the first two phases, 8 000 good non-linear mod-

els are harvested and the gene expression data they use is extracted.

Only gene expression data from good models is passed to the next phase.

There is a single run in the third phase. It takes the eight best of the orig-

inal 1 013 888 variables filtered by the first and then second phases and

generates the final predictive model.

3 Problems

The Emerald NFS disk system will happily cache even large files (like the

genetic programming training data, 352 Megabytes) but does not broad-

cast data. So, if twenty nodes try to read the same file, NFS simulta-

neously provides 20 copies of it. Even so it takes on average only 1.6

seconds to read the 352 megabytes of training data (A combined data

rate of about 30 billion bits/second.) The training data is saved by rsync

on each node’s local disk (/tmp) so that if the node is used again, e.g.

by the second pass, the training does not have to be read again. Also

separating transferring the training data across Emerald’s network from

the CUDA code can make it easier to diagnose problems. For larger files

or in cases where file I/O is more critical it could make sense for a single

node to read the file and then broadcast it to the others, e.g. via MPI or

hdf5.

SIGEVOlution Volume 6, Issue 1 16



EDITORIAL

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

15k

GPU
GP

1k

350MB

4 gene input survival predictor

222k

Fig. 2: Schematic of major data flows when datamining breast cancer dataset. (GeneChip training data in red.) Only 5 of the 100 GPU GP runs in the first two phases

are shown. The last phase (bottom) consists of a single GPU GP run which generates the final simple model which uses only four of the millions of GeneChip

data to predict long term survival following breast tumour surgery.
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The LSF batch queue software was written to share CPU cores but as yet

the Emerald LSF does not know about GPUs. Finding out which GPUs

are in use is tricky. The simplest approach is to use the LSF -x switch

to ensure each job has exclusive access to the nodes it runs on (and

therefore exclusive access to their GPUs). Having said that, there is an

unresolved problem whereby occasionally jobs fail with CUDA claiming a

GPU is already in use (error 46) when there aren’t any other LSF jobs

using it. LSF -x is also wasteful since each of Emerald’s nodes has twelve

cores but many of our jobs will only use three (or possibly eight).

There are a few little things which I found useful which are recorded in this

web page http://www.cs.ucl.ac.uk/staff/W.Langdon/emerald/ and techni-

cal report [7].

4 Results

The LSF cluster queue management system can organise the multiple GP

runs and various passes in many different ways. The final configuration

(see Figure 3) was chosen to try and extract the maximum amount of

parallelism by running all 100 GP runs in each pass in parallel but also to

minimise the number of times the training data has to be copied. The GP

runs are pretty uniform. If running well they each take approximately the

same time. Therefore synchronising all one hundred should not ideally

lead to much processing resources being wasted. Figure 3 distinguishes

between nodes with three GPU and those with eight. LSF is asked to

allocate 12 (of the 60) three GPU nodes and 8 (of the 24) eight GPU nodes.

This is done as two LSF job arrays (one with 12 elements and the second

has 8). In both arrays each job exclusively uses the whole of the Emerald

node it is allocated (including the GPUs). This takes a total of 20 nodes.

With this LSF configuration the application needs 20 copies of the training

data. Since in this case LSF used the same nodes for the second and last

passes, and the training data is copied to each node’s local disk, it does

not have to be copied again in the second or third passes. I.e. GP is run

201 times but the training data have to be copied only 20 times. Each

GP run is allocated its own GPU. So there are three GP runs on the three

GPU nodes (total 36) and eight GP runs on the eight GPU nodes (64). NFS

is used to transfer the 100 output files back to the disk server.

3 GP
3 GPU

8 GP
8 GPU

8 GP
8 GPU

3 GP
3 GPU

allgenes best

final 4 input survival
predictor

Fig. 3: Schematic of LSF jobs used when extracting predictive genetic factors

from the Uppsala breast cancer dataset on the Emerald supercomputer.

Each rectangle represents an LSF job containing 0, 3 or 8 GP runs. LSF

job array with 12× 3 gpu_gp_cuda runs per node in blue, left. (Total 36

GP runs.) LSF array with 8× 8 gpu_gp_cuda runs per node in red, right.

(Total 64 GP runs.) Job allgenes best gathers genes from first pass

and passes the best onto the second pass. LSF cannot start it until all

the first pass jobs are completed (black arrows show control dependen-

cies). When it completes, LSF can start the two second pass job arrays.

Similarly LSF cannot start the final job until all the second pass jobs are

finished. It gathers genes from the second pass runs before starting the

final GP run. Note similarity with data flows shown in Figure 2 and see

also the timing diagram in Figure 4.
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LSF is used to queue up the small job allgenes best which extracts

genes used by any of the best models in the final generation of the 100

first pass GP runs. It is simple and does not consume much CPU time

(and no GPU time). This list of 28 442 genes is stored on the file server

but it is only 222KB and so can be easily read via Emerald’s network

by the second pass jobs. Effectively allgenes best condenses about

1.5MB down to 222 Kbytes. LSF is used to release the job when both

first pass job arrays have finished and to start the corresponding two

second pass job arrays when it is done. A similar process is used to gather

genes selected by the second pass GP runs and start the final LSF job

containing the final GP run. (For convenience the final gene gathering

and the last GP run are combined into a single LSF job.)

The second pass GPU jobs are very similar to first pass and (apart from

reading the training data) take about the same time (see Figure 4).

The intention of this approach was to concentrate the task of reading the

training data on relatively few nodes and then use all the GPUs on those

nodes in parallel. In principle it should have been possible to run all of the

100 GP runs in parallel on 100 GPUs, however since Emerald is a shared

with other users this was not possible. As Figure 4 shows although twelve

3 GPU nodes were available only seven 8 GPU nodes were exclusively

available. This meant LSF had to reuse one 8 GPU node and the appli-

cation did not get the full parallelism theoretically available in Emerald.

This increased the total duration by about 40% however Emerald still in-

terpreted on average a total of 33.8 giga GPop/S.

5 Discussion

There are certainly things that can be done within our application to im-

prove it. At present host operations take a surprisingly large amount of

time. For example, selection, crossover and mutation are currently done

serially on the host but Pospichal et al. [12] have shown, in the case of

grammatical evolution, they can be done in parallel on the GPU.

Using 20 nodes is not the only option. LSF is quite flexible. Technical

report [7] describes using a single LSF array per pass in which each job

contains one GP run. This allows LSF more freedom to schedule jobs and

to potentially give the maximum degree of parallelism. LSF can start the

next operation when sufficient jobs have successfully completed. If more

jobs are started than are needed, this allows some redundancy and error

recovery (albeit at the cost of running unneeded jobs).
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Fig. 4: GP runs to winnow genetic factors for predicting survival after breast

surgery from millions of gene expression data. The plot shows parallel

running of 2×100+1 GP runs each with a population of five million with

all fitness evaluations done on Emerald’s M2090 nVidia Tesla cards. The

first 1.6 seconds are used copying 352MB of training data to the compute

nodes. On the 3 GPU nodes, all three passes take on average 48 seconds.

The runs on 8 GPU nodes take 63 seconds on average. (With more GPUs

there is more contention for the shared IDE bus.) Only seven 8 GPUs

nodes were available, so in both the first and second passes, GP runs

92–99 must wait until others have finished. Gathering and processing

all the output generated by each pass and making it ready for the next

pass takes about six seconds in both cases. The final GP run finished

6 minutes 43 sec after the whole application was submitted to Emerald

during which time 150 billion GP primitives were interpreted on each of

91 training cases, giving a composite rate of 33.8 giga GPop/second.
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However, at present, there is no guarantee that once LSF has found a free

CPU there will also be a GPU free on the same node. Another approach

that I tried was to have a three LSF jobs per pass sent to nodes with eight

GPUs. Each job runs GP as many times as needed in parallel on as many

GPUs as are free. This readily allows moving GP runs between GPUs if one

or more are not available and reduces network traffic between the nodes

and Emerald’s disk server. Again this is described in [7] but obviously it

allows at best only 24 GP runs in parallel rather than potentially all those

in the current pass.

Given a task large enough to warrant using all of Emerald, avoiding

scheduling difficulties, resolving the CUDA error 46 issue (Section 3)

and doing more of the genetic operations on the GPU, Emerald should

also be able to interpret at least half a tera GP operations per second

(0.5T GPop/S). However with more than a thousand CPU cores available,

it should also be possible to compile GP populations in parallel [1] thus

avoiding the interpreter overhead. In principle it also should be possi-

ble to evolve binary machine code [10] for graphics cards thus avoiding

both the compilation and interpreter overheads. However, so far there

has been little progress on this. Nonetheless, Lewis [8] has started in this

direction by directly evolving intermediate (assembler like) code.

Datamining the GSE3494 breast cancer dataset requires only about 30

minutes GPU computation on an single M2090. I was worried this would

be too small for Emerald. However I have been impressed by the respon-

siveness of Emerald and the LSF batch system in particular. It appears

to react quickly to jobs finishing, is able to quickly start new ones in re-

sponse and can cope with hundreds of simultaneous jobs.

6 Conclusions

An existing CUDA GPGPU genetic programming application which evolved

a predictor of long term breast cancer outcomes using Affymetrix gene

expression data [3] has been ported to Emerald without code change.

Despite Emerald being a shared resource (and therefore the application

not being able to access Emerald’s full parallelism) the GP interpreter

averaged more than 33 billion genetic programming operations per sec-

ond. This is the fastest floating point genetic programming datamining

application so far.

The initial disk server bandwidth problems (Section 3) have essentially

been solved. However the problem in which attempts to use a Tesla GPU

hardware board are sometimes rejected saying it is in use when it is not

(Section 3, error 46) and difficulties of reserving parts of Emerald for

exclusive use (with brsvs) have yet to be resolved. With any new system

there are pitfalls for the novice. Some of these are described in technical

report [7].
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Calls and Calendar

January 2013

Learning and Intelligent OptimizatioN Conference - LION 6

January 7-11, 2013, Catania, Italy

Homepage: http://www.intelligent-optimization.org/LION7/

Call for Papers: www

Deadline October 14, 2012

Conference dates: January 7-11, 2013

The large variety of heuristic algorithms for hard optimization problems

raises numerous interesting and challenging issues. Practitioners are

confronted with the burden of selecting the most appropriate method,

in many cases through an expensive algorithm configuration and param-

eter tuning process, and subject to a steep learning curve. Scientists

seek theoretical insights and demand a sound experimental methodol-

ogy for evaluating algorithms and assessing strengths and weaknesses.

A necessary prerequisite for this effort is a clear separation between the

algorithm and the experimenter, who, in too many cases, is "in the loop"

as a crucial intelligent learning component. Both issues are related to

designing and engineering ways of "learning" about the performance of

different techniques, and ways of using past experience about the algo-

rithm behavior to improve performance in the future. Intelligent learning

schemes for mining the knowledge obtained from different runs or during

a single run can improve the algorithm development and design process

and simplify the applications of high-performance optimization methods.

Combinations of algorithms can further improve the robustness and per-

formance of the individual components provided that sufficient knowl-

edge of the relationship between problem instance characteristics and

algorithm performance is obtained.

This meeting, which continues the successful series of LION events (see

LION 4 at Venice, and LION 5 at Rome, and LION 6 at Paris), is aimed

at exploring the intersections and uncharted territories between ma-

chine learning, artificial intelligence, mathematical programming and al-

gorithms for hard optimization problems. The main purpose of the event

is to bring together experts from these areas to discuss new ideas and

methods, challenges and opportunities in various application areas, gen-

eral trends and specific developments.

LION 7 Conference and Technical co-chairs

Panos Pardalos, University of Florida (USA)

Giuseppe Nicosia, University of Catania (Italy)
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April 2013

Evostar 2012 - EuroGP, EvoCOP, EvoBIO, EvoMusart

and EvoApplications

April 3-5, 2013, Vienna, Austria

Homepage: http://www.evostar.org

Deadline November 1, 2012

Camera-ready deadline: January 15, 2013

EvoStar comprises of five co-located conferences run each spring at dif-

ferent locations throughout Europe. These events arose out of workshops

originally developed by EvoNet, the Network of Excellence in Evolution-

ary Computing, established by the Information Societies Technology Pro-

gramme of the European Commission, and they represent a continuity of

research collaboration stretching back nearly 20 years.

EuroGP (www)

16th European Conference on Genetic Programming Papers are sought

on topics strongly related to the evolution of computer programs, ranging

from theoretical work to innovative applications.

EvoBIO (www)

11th European Conference on Evolutionary Computation, Machine Learn-

ing and Data Mining in Computational Biology Emphasis is on evolu-

tionary computation and other advanced techniques addressing impor-

tant problems in molecular biology, proteomics, genomics and genetics,

that have been implemented and tested in simulations and on real-life

datasets.

EvoCOP (www)

13th European Conference on Evolutionary Computation in Combinato-

rial Optimization Practical and theoretical contributions are invited, re-

lated to evolutionary computation techniques and other meta-heuristics

for solving combinatorial optimization problems.

EvoMUSART (www)

2nd International Conference (and 11th European Event) on Evolutionary

and Biologically Inspired Music, Sound, Art and Design.

EvoApplications (www)

15th European Conference on the Applications of Evolutionary Computa-

tion

EvoCOMNET (www): Application of Nature-inspired Techniques for

Communication Networks and other Parallel and Distributed Sys-

tems

EvoCOMPLEX (www): Applications of algorithms and complex sys-

tems

EvoENERGY (www): Evolutionary Algorithms in Energy Applica-

tions

EvoFIN (www): Track on Evolutionary Computation in Finance and

Economics

EvoGAMES (www): Bio-inspired Algorithms in Games

EvoIASP (www): Evolutionary computation in image analysis, sig-

nal processing and pattern recognition

EvoINDUSTRY (www): The application of Nature-Inspired Tech-

niques in industrial settings

EvoNUM (www): Bio-inspired algorithms for continuous parameter

optimisation

EvoPAR (www): Parallel and distributed Infrastructures

EvoRISK (www): Computational Intelligence for Risk Management,

Security and Defense Applications

EvoROBOT (www): Evolutionary Computation in Robotics

EvoSTOC (www): Evolutionary Algorithms in Stochastic and Dy-

namic Environments
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July 2013

GECCO 2013 - Genetic and Evolutionary Computation Conference

July 6-10, 2013, Amsterdam, The Netherlands

Homepage: http://www.sigevo.org/gecco-2013

Deadline January 23, 2013

Workshop and tutorial proposals submission: November 07, 2012

Author notification: March 14, 2013

The Genetic and Evolutionary Computation Conference (GECCO-2013)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

Important Dates

Paper Submission Deadline January 23, 2013

Decision Notification March 14, 2013

Camera-ready Submission April 17, 2013

Organizers

General Chair: Enrique Alba

Editor-in-Chief: Christian Blum

Proceeding Chair: Leonardo Vanneschi

Local Chairs: Peter Bosman

Evert Haasdijk

Publicity Chair: Xavier Llorá

Tutorials Chair: Gabriela Ochoa

Students Chair: Emilia Tantar

Workshops Chair: Mike Preuss

Competitions Chairs: Daniele Loiacono

Business Committee: Darrell Whitley

Marc Schoenauer

EC in Practice Chairs: Jörn Mehnen

Thomas Bartz-Beielstein,

How to Submit a Paper

Meet the submission deadline - January 23, 2013 - and submit substan-

tially new work. GECCO allows submissions of material that is substan-

tially similar to a paper being submitted contemporaneously for review

in another conference. However, if the submitted paper is accepted by

GECCO, the authors agree that substantially the same material will not be

published by another conference in the evolutionary computation field.

Material may be later revised and submitted to a journal, if permitted by

the journal.

More Information

Visit www.sigevo.org/gecco-2013 for information about deadlines, stu-

dent travel grants, hotel reservations, student housing, the graduate

student workshop, the latest list of topics, late-breaking papers, and

more. For matters of science and program content, contact Conference

Chair Enrique Alba at gecco2013chair@sigevolution.org while for gen-

eral help and administrative matters please contact GECCO support at

gecco2013@sigevolution.org

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.

SIGEVOlution Volume 6, Issue 1 24

http://www.sigevo.org/gecco-2013
http://www.sigevo.org/gecco-2013
mailto:gecco2013chair@sigevolution.org
mailto:gecco2013@sigevolution.org


About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate in an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.
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