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EDITORIAL

Editorial

I
t is a great pleasure and a great honor for me to introduce this new issue of SIGEVOlution that

hosts an interview with Stewart W. Wilson. To me, Stewart is a mentor and a great friend. To

our community, he is the person who, with XCS and XCSF, singlehandedly revolutionized learning

classifier system research. In 1994, his paper on XCS in the Evolutionary Computation Journal,

brought new life to an almost stalled research field, providing the community with the first classifier

system that could tackle a wide variety of difficult problems. In 2001, he introduced XCSF a classifier

system for function approximation and opened up a completely new horizon. If you are doing research

in learning classifier system today, you are probably using one of his models or something derived from

them.

The second paper by Sara Silva presents a new recipe for operator equalization to control bloat in Genetic

Programming. The paper has been one of the best paper nominees at GECCO-2011 and is reprinted

here with the permission of ACM and Sara. An extended version of it also appears in the new Genetic

Programming Theory and Practice volume.

FOGA-2013 is looking for a home! The deadline to propose a venue to host such an interesting event is

September 30 so hurry up! You can find the detailed call for proposal inside the newsletter.

I hope you like the cover!

Pier Luca

September 22, 2011
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An Interview with Stewart W. Wilson
with an introduction by Martin V. Butz

Stewart W. Wilson, Prediction Dynamics, Concord, MA 01742, wilson@prediction-dynamics.com

Stewart W. Wilson is certainly one of the most innovative and

functionality-oriented thinkers I have ever had the honor to meet. His

research career commenced at the Massachusetts Institute of Technol-

ogy (MIT), where he received an S.B. degree in physics and an S.M. and

PhD degree in electrical engineering. After having completed his formal

education, research work at the Polaroid Corporation (starting in 1962)

and the Rowland Institute for Science (starting in 1983) led him to the de-

velopment of practically useful, yet highly complex, biologically-inspired

systems and machine learning architectures. In 1998 he founded the

research and consultancy company Prediction Dynamics. Since 1999

he has been an adjunct professor at the University of Illinois at Urbana-

Champaign, IL.

Albeit Learning Classifier Systems were proposed by John H. Holland in

the 1970s, Stewart is most closely associated with these systems. As

the inventor of the zeroth-level classifier system ZCS in 1994 and the

accuracy-based classifier system XCS in 1995, he has set a standard in

this research realm that is still valid and highly useful today. In fact,

the XCS classifier system may be considered one of the most power-

ful genetics-based machine learning tools available. Originally designed

to solve Boolean function problems and maze-like reinforcement learn-

ing problems, XCS has now been successfully applied to various other

problem domains. In datamining, XCS has shown very robust and highly

competitive classification results and has also generated insights into the

underlying problem structure. In online generalizing reinforcement learn-

ing problems, XCS has successfully solved problems with very huge state

spaces (more than 1027 states).

In function approximation problems, XCS has solved high-dimensional re-

gression problems with near optimal final solution distributions. Finally,

in the robotics domain, XCS has been shown to autonomously learn for-

ward and inverse kinematic models that are highly useful for the flexible,

task-dependent control of redundant actuator systems. Thus, Stewart

not only created a good system for solving Boolean functions, but he ac-

tually initiated a whole machine learning branch in the form of a very

flexible, highly innovative learning architecture.

In addition to his intellectual achievements, Stewart has always been a

great friend, mentor, and research partner to me and many others. Hav-

ing gotten the opportunity to talk with him over many years, I can only

wish to be and stay as open minded, approachable, and innovative as he.

Martin V. Butz, University of Würzburg

Everybody knows the enormous influence you had in

our field. Would you summarize the key ideas of learn-

ing classifier systems in 2-3 paragraphs for someone

unfamiliar with the field?

The most key idea is Holland’s proposal that you could

base a learning system on an evolving population of

condition-action rules. The rules (classifiers) would

compete and/or cooperate to obtain maximum payoff

(reinforcement) from the environment. They would be

evolved based on their ability to get payoff, resulting in

a system containing rules that better and better fit the

environment, including an environment that changed

with time.
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His second key idea was to propose a solution for envi-

ronments that did not provide payoff upon each action

of the system, but only did so at the end of a sequence

of actions. His bucket-brigade technique built on an

idea of Samuel’s for checkers, and in effect passed pay-

off back to classifiers that set the stage for later payoff-

achieving actions. The bucket brigade helped inspire

the field of reinforcement learning and was one of its

first examples.

A third key idea has to do with how the fitness of a clas-

sifier is measured. Originally the amount of payoff a

classifier received determined its fitness. However, it

was discovered that basing fitness on the accuracy of a

classifier’s prediction of payoff– instead of on the pay-

off itself–resulted in much better performance and led

to the first systems that worked robustly and reliably.

They also generalized accurately over environmental

regularities.

A fourth key idea is the introduction of classifiers that

compute their payoff prediction instead of simply as-

serting a scalar value. The computation is usually a lin-

ear function of the input vector, but can be higher-order

as well. This leads to stronger generalization ability as

well as use of the system as an adaptive function ap-

proximator.

What experiences in school, if any, influenced you to

pursue a career in science?

In secondary school I was interested in nearly every

subject and all my teachers were good, with the En-

glish and French teachers probably the most influential.

However, in math and science I liked being able to be

more sure of something than in other subjects. I was

also interested in what lay behind things, including the

universe— e.g., "Why is the sun?", asked the 15-year-

old. So when the opportunity came to go to Harvard

or MIT, I picked MIT. Later, I became increasingly inter-

ested in intelligence, learning, and “what we are”.

Who are the three people whose work inspired you the

most in your research?

Chronologically, Edwin H. Land, Jerome Lettvin, and

John Holland.

Land invented sheet polarizers, created instant photog-

raphy and the Polaroid Corporation, and introduced the

first significantly non-Newtonian theory of color vision.

He was a creative genius who knew how to challenge

people to do their very best, and he understood that

failure had to be a part of it. He taught me about what

it means to be a scientist, which I will illustrate with a

couple of quotations:

“If I don’t have one good experiment a day,

the world tends to go out of focus”.

“If the experiment doesn’t work, distrust the

experiment.

If the experiment works, distrust the theory.”

“Science is a method to keep

yourself from fooling yourself”.

Jerome Lettvin was a pioneer of neuroscience (“What

the frog’s eye tells the frog’s brain”). He constantly

asked what could be there that we don’t yet see, that

may be bigger than we imagine. Jerry was very help-

ful to me when I was thinking about vision. He pointed

me toward Helmholz’s description of the peripheral vi-

sion experiment of Aubert and Foerster, which deeply

affected how I thought about vision and the brain/mind.

With John Holland, as with Land and Lettvin, I was

inspired by his constant thinking outside–beyond–the

mainstream. When in about 1980 I discovered John’s

book in the basement of the MIT library, apparently

never having been checked out, I was immediately set

on my path to classifier systems.
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Here at last was somebody asking the right questions

about learning and adaptation, which I believed had

been ignored by AI, and he asked those questions pre-

cisely and from a perspective that seemed olympian in

its scope.

When shortly afterwards I met John at an Ann Arbor

seminar he kindly invited me to, I was attracted by his

unusual combination of intellectual openness and faith

in his own ideas.

What are the three books or papers that inspired you

most?

One paper, “Pandemonium: a paradigm for learning”

(1959), by Oliver Selfridge, had an early effect on me.

I knew Oliver, who was very smart and constantly

thought "outside of the box".

I would mention also the book “Brains, Behavior, &

Robotics”, by James S. Albus. In it he introduced the

very clever CMAC learning algorithm which he derived

from observations of the cerebellum. Albus also has

much to say about hierarchy in cognition and learning.

Finally, I would mention John Koza’s first book, which al-

ways impressed me with its sudden creation of another

evolutionary mainstream.

As a founding father of this field, what is your own view

about what learning classifier systems are? What did

you expect them to be?

Well, I would say they are a powerful and versatile cog-

nitive model. Of course, the model is still fairly simple.

But I think its strength compared with other architec-

tures such as neural networks is that it is based on rules

and is open in the sense that a computation in one part

of the system (population) can be independent of other

computations going on.

This gives the possibility–if we are clever– of adaptively

building computational levels or hierarchies, of having

one part of the system observe other parts, etc.

What did I expect? Just this kind of thing!

What do you like most about EC?

The magic. And the people.

What do you dislike most about EC?

Only seeing it, as other fields sometimes do, get too

involved in details. In this respect, a venture like the

“Humies” competition is wonderful.

What is the biggest open question in the evolutionary

computation area?

How far it can be taken. I.e., what is the maximum level

of problem difficulty or complexity that can be solved

by evolutionary methods? What does this depend on:

adequate representation, algorithmic techniques, hard-

ware?

Where do you see the evolutionary computation com-

munity going in the next ten years? Twenty years?

I can’t comment beyond what I have already said.

SIGEVOlution Volume 5, Issue 3 4

http://www.sybergroup.com/docs/Pandemonium.pdf
http://en.wikipedia.org/wiki/Oliver_Selfridge
http://catalogue.nla.gov.au/Record/4558530
http://catalogue.nla.gov.au/Record/4558530
http://en.wikipedia.org/wiki/James_S._Albus
http://en.wikipedia.org/wiki/John_Koza
http://www.amazon.com/Genetic-Programming-Computers-Selection-Adaptive/dp/0262111705/ref=ntt_at_ep_dpt_1
http://www.genetic-programming.org/hc2005/main.html


EDITORIAL

What are your favorite real-world applications of learn-

ing classifier systems?

One was some work for a client on an important oil in-

dustry problem–the ability to instantaneously measure

the actual flow of oil in a pipe. This is hard because

usually the oil is mixed up with water, sand and gravel,

air and other gases. The classifier system received an

input derived from an acoustic signal, i.e., from "listen-

ing" to the pipe. Amazingly, the system (XCSF in this

case) learned to output the correct actual oil flow. This

is an example of learning in a complex and nonlinear

situation with no known analytical solution.

There are many other applications, especially in data

mining, autonomous robotics, and control. Larry Bull’s

book "Applications of Learning Classifier Systems" is a

good source of examples.

Your papers are sources of inspirations. Is there any

topic in your papers which you hoped people would take

more seriously?

Hmm. I’ve been lucky in that most topics have been

taken up and extended eventually. However, several

could be pushed further.

One is internal state in a classifier system–which per-

mits the system to learn in non-Markov environments.

This is fundamental to getting intelligent robotics. An-

other is pushing the ability of individual classifiers to

generalize over environmental regularities, thus reduc-

ing the number of classifiers needed and increasing

readability (perhaps by the system itself) of the knowl-

edge. Generalization would seem to depend on increas-

ing the syntactic flexibility of classifier conditions.

My most recent paper is the outcome of several years’

thinking about pattern recognition. It takes a new and

rather unexpected viewpoint which I hope others will

want to follow up.

Which ones are the most misunderstood/misquoted?

Here again, I’ve been lucky.

If you could do it again, what would you do differently

in your development of the evolutionary computation

field?

I don’t have any regrets about paths not taken, only that

I might have had more energy or been smarter!

What new ideas are you working on and excited about?

Those of the recent paper just mentioned in which a co-

evolutionary situation is set up in which programs are

induced to generate and recognize increasingly sophis-

ticated patterns—in an effort to allow exploration of op-

erators and methods without the limitations of human

preconceptions as to what they should be.

In another theme, I am investigating prediction from

time-based data streams where the histories are quite

limited, so that the identification of significant features

is paramount. This seems characteristic of life itself,

and has many interesting applications.

What books, tangentially related to the field, that

you’ve read in the last year did you like the best?

I finally read “Atlas Shrugged” and greatly enjoyed it.

Besides being a terrific story, it describes a titanic con-

test of libertarian and anti-libertarian or socialist forces

that recalls some of evolutionary computation, at least

metaphorically.
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You had many successful PhD students. What is your

recipe for PhD success?

Pick an inspiring advisor who will remember what you

are doing but will let you find your own way. Choose

a problem or topic that you believe is very important,

for which you believe you have a special insight or per-

spective, and which with enough effort you know you

can solve or contribute to in a major way.

Document your experiments and thinking so you can

reproduce them, both for others and for yourself.

Your key advice to a PhD student?

Don’t give up! If you do you will always regret it.

What advice would you give to students and beginning

researchers who are starting to work in evolutionary

computation?

From reading and talking to people, find a nascent idea

that you think is valuable but needs much further de-

velopment. Pick it up and run with it.

Has thinking about evolution changed your view on

things in general?

There is no doubt that evolutionary computation has

given me a clearer picture of natural evolution, even

though EC is in a sense only a sketch. Has think-

ing about evolution affected my view in general? It

has increased my appreciation for things like survival-

oriented motivations, as well as the wonders of genetic

possibility. I would say, though, that I resist going to an

exclusively evolutionary world-view just yet, because I

think there is still much more to be learned.

About the author

Stewart W. Wilson was born in Rochester, NY, USA. In

1960, he received the S.B. degree in physics from MIT.

He received the S.M. and Ph.D. degrees in electrical en-

gineering from MIT in 1962 and 1967. His research and

consulting entity is Prediction Dynamics, Concord, MA.

He was associated at Polaroid Corporation with Dr. Edwin H. Land in

investigations of systems that allowed students to learn via asking

their own questions of well-known scientists. Later, at the Rowland

Institute for Science, Cambridge, MA, he continued his long-term in-

terest in computer programs that learn, with special focus on the

classifier systems that had been introduced by John H. Holland. Dr.

Wilson is an Adjunct Professor in the Department of Department of

Industial and Enterprise Systems Engineering of the University of

Illinois at Urbana/Champaign. He is an Associate in VGO Associates,

the systems consulting firm founded and headed by David Davis.

He is on the Advisory Board of Evolutionary Computation and is a

member of the Editorial Boards of Artificial Life and Adaptive Be-

havior. He is a co-founder of Adaptive Behavior and the Simulation

of Adaptive Behavior (SAB) conferences. Besides learning systems

and perception, he is interested in history and politics (free market

views), and classical music.

Homepage: http://www.prediction-dynamics.com

Email: wilson@prediction-dynamics.com
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Call For Proposals to Host and Chair FOGA

The “Foundations of Genetic Algorithms" (FOGA) meetings have been

held approximately every two years since 1990. In that time, FOGA has

expanded to cover all aspects of the theoretical foundations of all Evolu-

tionary Algorithms.

Proposals are being soliciting to host and chair FOGA sometime during

2012 or 2013. Proposals should include information on where FOGA

would be held, and background information should be provided about

the proposed organizers. Proposals should also include proposed dates

for FOGA.

Proposals should be submitted to Darrell Whitley whit-

ley@CS.ColoState.EDU and Wolfgang Banzhaf banzhaf@mun.ca no

later than September 30, 2011. The final selection will be made by the

SIGEVO Executive Committee and proposers will be notified by October

17, 2011.

FOGA is 100% sponsored by the Association for Computing Machinery

(ACM) Special Interest Group on Genetic and Evolutionary Computation,

SIGEVO.

Important Dates

Proposal Submission September 30, 2011

Notification October 17, 2011
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GECCO-2011 Best Paper Awards

In 2002, ISGEC created a best paper award for GECCO. As part of the dou-

ble blind peer review, the reviewers were asked to nominate papers for

best paper awards. We continue the tradition this year. The Track Chairs,

Editor in Chief, and the Conference Chair nominated the papers that re-

ceived the most nominations and/or the highest evaluation scores for

consideration by the conference. The winners are chosen by secret bal-

lot of the GECCO attendees after the papers have been orally presented

at the conference. Best Paper winners are posted on the conference web-

site. The titles and authors of all the best papers awarded at GECCO-2011

are given below:

Ant Colony Optimization and Swarm Intelligence

An Incremental ACOR with Local Search for Continuous Optimiza-

tion Problems. Tianjun Liao (IRIDIA, CoDE, Universite Libre de Brux-

elles), Marco Montes de Oca (IRIDIA, CoDE, Universite Libre de Bruxelles),

Dogan Aydin (Ege University), Thomas Stützle (IRIDIA, CoDE, Universite

Libre de Bruxelles), Marco Dorigo (IRIDIA, CoDE, Universite Libre de Brux-

elles)

Artificial Life/Robotics/Evolvable Hardware

Spontaneous Evolution of Structural Modularity in Robot Neural

Network Controllers. Josh Bongard (University of Vermont)

Bioinformatics, Computational, Systems, and
Synthetic Biology

A Genetic Algorithm to Enhance Transmembrane Helices Topol-

ogy Prediction Using Compositional Index. Nizar Zaki (UAE Univer-

sity), Salah Bouktif (UAE University), Sanja Molnar (UAE University)

Digital Entertainment Technologies and Arts

Interactively Evolving Harmonies through Functional Scaffold-

ing. Amy Hoover (University of Central Florida), Paul Szerlip (University

of Central Florida), Kenneth Stanley (University of Central Florida)

Evolutionary Combinatorial Optimization and
Metaheuristics

A Cooperative Tree-based Hybrid GA-B&B Approach for Solving

Challenging Permutation-based Problems. Malika Mehdi (University

of Luxembourg & INRIA Lille), Jean-Claude Charr (INRIA Lille Nord-Europe -

University of Lille), Nouredine Melab (INRIA Lille Nord-Europe - University

of Lille), EL-Ghazali Talbi (INRIA Lille Nord-Europe - University of Lille),

Pascal Bouvry (University of Luxembourg)

Estimation of Distribution Algorithms

Hierarchical Allelic Pairwise Independent Functions. David Iclăn-

zan (Sapientia Hungaryan University of Transylvania)

Evolutionary Multiobjective Optimization

Improved S-CDAS using Crossover Controlling the Number of

Crossed Genes for Many-objective Optimization. Hiroyuki Sato (The

University of Electro-Communications), Hernan Aguirre (Shinshu Univer-

sity), Kiyoshi Tanaka (Shinshu University)

Evolution Strategies and Evolutionary Programming

Local-Meta-Model CMA-ES for Partially Separable Functions.

Zyed Bouzarkouna (IFP Energies nouvelles), Anne Auger (INRIA), Didier

Yu Ding (IFP Energies nouvelles)
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Genetic Algorithms

How Crossover Helps in Pseudo-Boolean Optimization. Timo Kötz-

ing (Max-Planck-Institute for Informatics), Dirk Sudholt (University of

Birmingham), Madeleine Theile (Technische Universität Berlin)

Genetics Based Machine Learning

Modelling the Initialisation Stage of the ALKR Representation for

Discrete Domains and GABIL Encoding. Maria Franco (University of

Nottingham), Natalio Krasnogor (University of Nottingham), Jaume Bac-

ardit (University of Nottingham)

Genetic Programming

Rethinking Multilevel Selection in Genetic Programming. Shelly

Wu (Memorial University of Newfoundland), Wolfgang Banzhaf (Memorial

University of Newfoundland)

Generative and Developmental Systems

On the Relationships between Synaptic Plasticity and Generative

Systems. Paul Tonelli (ISIR, Université Pierre et Marie Curie-Paris 6, CNRS

UMR 7222), Jean-Baptiste Mouret (ISIR, Université Pierre et Marie Curie-

Paris 6, CNRS UMR 7222)

Real World Applications

RankDE: Learning a Ranking Function for Information Retrieval

using Differential Evolution. Danushka Bollegala (The University of

Tokyo), Nasimul Noman (The University of Tokyo), Hitoshi Iba (The Uni-

versity of Tokyo)

Search-Based Software Engineering

Searching for Invariants using Genetic Programming and Muta-

tion Testing. Sam Ratcliffe (University of York), David White (University

of York), John Clark (University of York)

Self-* Search

Policy Matrix Evolution for Generation of Heuristics. Ender Ozcan

(University of Nottingham), Andrew Parkes (University of Nottingham)

Theory

An Analysis on Recombination in Multi-Objective Evolutionary

Optimization. Chao Qian (Nanjing University), Yang Yu (Nanjing Uni-

versity), Zhihua Zhou (Nanjing University)
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Reassembling Operator
Equalisation: A Secret Revealed

Sara Silva — INESC-ID Lisboa, IST / UNL, Portugal — CISUC, University of Coimbra, Portugal — sara@kdbio.inesc-id.pt

The recent Crossover Bias theory has shown that bloat in Genetic Pro-

gramming can be caused by the proliferation of small unfit individuals

in the population. Inspired by this theory, Operator Equalisation is the

most recent and successful bloat control method available. In this work

we revisit two bloat control methods, the old Brood Recombination and

the newer Dynamic Limits, hypothesizing that together they contain the

two main ingredients that make Operator Equalisation so successful. We

reassemble Operator Equalisation by joining these two ingredients in a

hybrid method, and test it in a hard real world regression problem. The

results are surprising. Operator Equalisation and the hybrid variants ex-

hibit completely different behaviors, and an unexpected feature of Oper-

ator Equalisation is revealed, one that may be the true responsible for its

success: a nearly flat length distribution target. We support this finding

with additional results, and discuss its implications.

1 Introduction

The most recent theory concerning bloat is the Crossover Bias theory

introduced by Dignum, Poli and Langdon [11, 5, 6]. It explains code

growth in tree based GP by the effect that standard subtree crossover

has on the distribution of tree sizes, or program lengths, in the popula-

tion. Whenever subtree crossover is applied, the amount of genetic ma-

terial removed from the first parent is the exact same amount inserted in

the second parent, and vice versa. The mean tree size, or mean program

length, remains unchanged.

However, as the population undergoes repeated crossover operations, it

approaches a particular Lagrange distribution of tree sizes where small

individuals are much more frequent than the larger ones [6]. For exam-

ple, crossover generates a high amount of single-node individuals. Be-

cause very small individuals are generally unfit, selection tends to reject

them in favor of the larger individuals, causing an increase in mean tree

size. According to the theory, it is the proliferation of these small un-

fit individuals, perpetuated by crossover, that ultimately causes bloat.

Strong theoretical and empirical evidence supports the Crossover Bias

theory. It has been shown that the bias towards smaller individuals is

more intense when the population mean tree size is low, and that the ini-

tial populations resembling the Lagrange distribution bloat more easily

than the ones initialized with traditional methods [11]. It was also found

that the usage of size limits may actually speed code growth in the early

stages of the run, as it promotes the proliferation of the smaller individ-

uals [6]. Along with further theoretical developments, it has also been

shown that smaller populations bloat more slowly [14], and that elitism

reduces bloat [13, 12].

Inspired by the Crossover Bias theory, Operator Equalisation [7, 17] is

the most recent and successful bloat control method available today. It

can bias the population towards a desired program length distribution by

accepting or rejecting each newly created individual into the population.

Operator Equalisation can easily avoid the small unfit individuals result-

ing from the crossover bias, as well as the excessively large individuals

that are no better than the smaller ones already found.
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Preventing the larger individuals from entering the population is a com-

mon bloat control practice; preventing the smaller ones is not, however

it has been done non explicitly. We revisit two bloat control methods,

the old Brood Recombination [21] and the newer Dynamic Limits [16],

hypothesizing that together they contain these two key ingredients that

seem to make Operator Equalisation so successful. We reassemble Oper-

ator Equalisation by joining them in a hybrid method, and test it in a hard

real world regression problem, revealing surprising results.

In the next section we describe Operator Equalisation with some detail.

Sections 3 and 4 describe Brood Recombination and Dynamic Limits, ex-

plaining why they contain the necessary ingredients to reassemble Oper-

ator Equalisation. Section 5 describes the data, techniques and parame-

ters used for the experiments, while Section 6 reports and discusses all

the results obtained. Finally, Section 7 summarizes and draws conclu-

sions, also suggesting future work.

2 Operator Equalisation

Developed alongside the Crossover Bias theory (see Section 1), Operator

Equalisation is a recent technique to control bloat that allows an accurate

control of the program length distribution inside a population during a GP

run. Already used a number of times in benchmark and real world prob-

lems (e.g. [18, 19, 22, 20]), it is however still fairly new, so we provide a

detailed explanation of how it works.

2.1 Distribution of program lengths

We use the concept of a histogram. Each bar of the histogram can

be imagined as a bin containing those programs (individuals, solutions)

whose length is within a certain interval. The width of the bar determines

the range of lengths that fall into this bin, and the height specifies the

number of programs allowed within. We call the former bin width and the

latter bin capacity. All bins are the same width, placed adjacently with

no overlapping. Each length value, l, belongs to one and only one bin b,

identified as follows:

b =

⌊
l−1

bin_width

⌋
+1 (1)

For instance, if bin_width = 5, bin 1 will hold programs of lengths 1,..,5,

bin 2 will hold programs of lengths 6,..,10, etc. The set of bins represents

the distribution of program lengths in the population.

Operator Equalisation biases the population towards a desired target dis-

tribution by accepting or rejecting each newly created individual into the

population (and into its corresponding bin). The original idea of Operator

Equalisation [7], where the user was required to specify the target distri-

bution and maximum program length, rapidly evolved to a self adapting

implementation [17] we here designate as OpEq, where both these ele-

ments are automatically set and dynamically updated to provide the best

setting for each stage of the evolutionary process. Other developments

of Operator Equalisation were also made [18] but we do not use them

here.

There are two tasks involved in OpEq: calculating the target (in practi-

cal terms, defining the capacity of each bin) and making the population

follow it (making sure the individuals in the population fill the set of bins).

2.2 Calculating the Target Distribution

In OpEq the dynamic target length distribution simply follows fitness. For

each bin, the average fitness of the individuals within is calculated, and

the target is proportional to these values. Bins with better average fit-

ness will have higher capacity, because that is where search is proving

to be more successful. Formalizing, the capacity, or target number of

individuals, for each bin b, is calculated as:

bin_capacityb = round(n× ( f̄b/∑
i

f̄i)) (2)

where f̄i is the average fitness in the bin with index i, f̄b is the average

fitness of the individuals in b, and n is the number of individuals in the

population. Equation 2 is used for maximization problems where higher

fitness is better (so the fitness values must suffer a transformation for

minimization problems, for example a sign inversion and mapping back

to positive values).
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Initially based on the first randomly created population, the target is up-

dated at each generation, always based on the fitness measurements

of the current population. This creates a fast moving bias towards the

areas of the search space where the fittest programs are, avoiding the

small unfit individuals resulting from the crossover bias, as well as the

excessively large individuals that are no better than the smaller ones al-

ready found. Thus the dynamic target is capable of self adapting to any

problem and any stage of the run.

2.3 Following the Target Distribution

In OpEq every newly created individual must be validated before even-

tually entering the population, and the ones who do not fit the target are

rejected. Each offspring is created by genetic operators as in any other

GP system. After that, its length is measured and its corresponding bin

is identified using Equation 1. If this bin already exists and is not full

(meaning that its capacity is higher than the number of individuals al-

ready there), the new individual is immediately accepted. If the bin still

does not exist (meaning it lies outside the current target boundaries) the

fitness of the individual is measured and, in case we are in the presence

of the new best-of-run (the individual with best fitness found so far), the

bin is created to accept the new individual, becoming immediately full.

Any other non-existing bins between the new bin and the target bound-

aries also become available with capacity for only one individual each.

The dynamic creation of new bins frees OpEq from the fixed maximum

program length that was present in the original idea. The criterion of cre-

ating new bins whenever needed to accommodate the new best-of-run

individual is inspired by the Dynamic Limits bloat control technique [16].

When the intended bin exists but is already at its full capacity, or when

the intended bin does not exist and the new individual is not the best-

of-run, the individual is evaluated and, if we are in the presence of the

new best-of-bin (meaning the individual has better fitness than any other

already in that bin), the bin is forced to increase its capacity and accept

the individual. Otherwise, the individual is rejected. Permitting the ad-

dition of individuals beyond the bin capacity allows a clever overriding

of the target distribution, by further biasing the population towards the

lengths where the search is having a higher degree of success. In the

second case, when the bin does not exist and the individual is not the

best-of-run, rejection always occurs.

3 Brood Recombination

Brood Recombination, also called Greedy Recombination, was popular-

ized by Tackett in 1994 [21] as a new recombination operator to serve as

a substitute for the standard subtree crossover. Instead of recombining

two parents once to produce one pair of offspring, Brood Recombination

recombines two parents n times, each time selecting different crossover

points, to produce n pairs of offspring, where n is called the brood size

factor. Then only two offspring are selected, the best of the brood, and

the rest discarded. This idea was originally introduced by Altenberg as

Soft Brood Selection [1], to which Tackett added the use of a reduced-

cost fitness evaluation for members of the brood. The primary motivation

for developing Brood Recombination was to improve the efficiency of GP

systems:

“The fitness evaluation of brood members is performed with

a ‘culling function’ which is a fractional subset of the fitness

evaluation function for full-fledged population members. A sig-

nificant result is that large reductions in the cost of the culling

function produce small performance degradation of the popu-

lation members.” [21]

The secondary motivation was to reduce bloat, based on the early

and long lasting theory that bloat emerges as a protection against the

destructive effects of crossover (e.g. [1, 4, 8, 10], for a review of bloat

theories see [16]). But Tackett refutes this theory based on the fact

that Brood Recombination, being a much less destructive recombination

operator, was not able to reduce code growth. However, according to the

Crossover Bias theory, Brood Recombination should help control bloat. In

practical terms, creating several pairs of offspring and then choosing only

the best may reduce the crossover bias to create many small individuals.

If it is verified that the smaller offspring are indeed the most unfit, they

will not be selected from among the brood members, and not introduced

into the population. The larger the brood, the larger the reduction of bias.

Therefore, we designate Brood Recombination as the first key element

for assembling a hybrid method that recreates the successful behavior of

Operator Equalisation. We do not, however, use the “culling function” for

brood member selection, instead using the same fitness function used for

full-fledged population members.
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This means we are in fact using the original Soft Brood Selection [1],

however we decide to keep the most popular name of Brood Recombina-

tion. We also introduce a variant of Brood Recombination which we call

Batch Recombination. The only difference is that, instead of repeatedly

selecting two offspring from the 2n brood members produced by each

single couple, all the offspring needed to form a new generation are now

selected only once from among the several broods produced by all the

couples. This should reduce the crossover bias ever further.

4 Dynamic Limits

Tree-based GP traditionally uses a static depth limit to avoid excessive

growth of its individuals. When an individual is created that violates this

limit, one of its parents is chosen for the new generation instead [9].

“This effectively avoids the growth of trees beyond a cer-

tain point, but it does nothing to control bloat until the limit is

reached. The static nature of the limit may also prevent the

optimal solution to be found for problems of unsuspected high

complexity.” [16]

These unsolved problems lead Silva et al. to create a bloat control tech-

nique called Dynamic Maximum Tree Depth [15, 16]. It also imposes a

depth limit on the individuals accepted into the population, but this one

is dynamic, meaning that it can be changed during the run. The dynamic

limit is initially set with a low value, usually the same as the maximum

depth of the initial random trees. Any new individual who breaks this

limit is rejected and replaced by one of its parents (as with the traditional

static limit), unless it is the best individual found so far. In this case, the

dynamic limit is raised to match the depth of the new best-of-run and

allow it into the population. Dynamic Maximum Tree Depth can coexist

with the traditional depth limit.

First published in 2003 [15], the original Dynamic Maximum Tree Depth

was then extended to include two variants: a heavy dynamic limit, called

heavy because it falls back to lower values whenever allowed, and a dy-

namic limit on size instead of depth. The entire concept has later been

collectively designated as Dynamic Limits [16]. The heavy limit is one

that accompanies the depth of the best individual, up or down, with

the sole constraint of not going lower than its initialization value; a very

heavy option allows it to fall back even below its initialization value.

As expected, whenever the limit falls back to a lower value, some indi-

viduals already in the population immediately break the new limit. These

are allowed to remain in the population but, when breeding, the limit that

applies to their children is the depth of the deepest parent. The second

variation is the usage of a dynamic size limit, where size is the number

of nodes of the tree. The dynamic size limit also includes a modified ver-

sion of the Ramped Half-and-Half initialization procedure that replaces

the concept of depth with the concept of size.

Since Operator Equalisation itself was inspired by the Dynamic Limits for

the decision on when to open new bins (see Section 2.3), it is only natural

to assume that this is the second key element for its success. Although a

size limit would probably mimic the decisions made by Operator Equalisa-

tion more accurately (because they are based on solution length, which

is exactly the same thing), this variant was never as successful as us-

ing depth [16] and has the additional burden of a modified initialization

procedure, so we decided to use the dynamic limit on depth. We have,

however, chosen the very heavy option that allows the limit to fall back

as much as possible, since in Operator Equalisation it is also possible to

eliminate any bins from the target, in case they remain empty.

5 Experiments

To perform our experiments we chose to use the first real world problem

that was tackled by Operator Equalisation, the prediction of the human

oral bioavailability of a set of candidate drug compounds on the basis of

their molecular structure [18, 19]. We briefly describe the problem and

then specify how Operator Equalisation was reassembled using Brood Re-

combination and Dynamic Limits, specifying the techniques and param-

eters used in the experiments.

5.1 Test Problem

Human oral bioavailability is the pharmacokinetic parameter that mea-

sures the percentage of the initial orally submitted drug dose that effec-

tively reaches the systemic blood circulation after passing through the

liver. This parameter is particularly relevant in the drug discovery pro-

cess, and this problem has already been approached by several machine

learning methods, with GP providing the best results so far [2, 3].
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We have used the same dataset as [18, 19], which is freely available1.

The dataset consists of a matrix composed by 260 rows and 242 columns,

where each row is a vector of molecular descriptors of a particular drug,

and each column represents a molecular descriptor, except the last one

that contains the known target values of the bioavailability parameter.

Following [18, 19], from this dataset training and test sets were obtained

by random splitting: at each different run, 70% of the molecules were

randomly selected with uniform probability and inserted into the training

set, while the remaining 30% were used for the test set.

5.2 Techniques and Parameters

To reassemble Operator Equalisation we began by implementing a Stan-

dard GP system (StdGP). Then we joined Brood Recombination (Brood),

alternatively Batch Recombination (Batch), using different Brood/Batch

sizes (2,5,10). To assess how much the Brood/Batch Recombination dif-

fers from Standard GP, and how much it pushes the behavior towards

Operator Equalisation (OpEq), we compared all of them to each other.

On a second phase we joined Dynamic Limits (Dyn) to all the previous

variants to create the hybrid techniques, and once again performed com-

parisons among them, to assess how much they are able to approximate

the behavior of OpEq. Finally we implemented OpEq with a flat target

distribution (FlatOpEq) to verify some of our results.

Table 1 shows the numbers and acronyms of the 16 different techniques

used. Some of the plots of Section 6 use the numbers for lack of space for

the acronyms. Table 2 shows the parameter settings common to all the

techniques. Regarding the parameters specific to each technique, both

Operator Equalisation techniques use a bin width of 1, and none uses the

maximum depth limit.

6 Results and Discussion

Some of the plots presented in this section are still somewhat unconven-

tional. They plot the evolution of fitness against length of the solution,

completely disregarding generations, evaluations, or time spent in the

search process.

1 http://personal.disco.unimib.it/Vanneschi/bioavailability.txt

These plots have been first used by Silva and Dignum [17] and we con-

sider them to be an intuitive way of visualizing the bloating behavior of

any given technique.

Indeed, we are not interested in measuring the performance of the tech-

niques in terms of how much computational effort is required to achieve

a given fitness. Operator Equalisation is recognized to be inefficient, an

issue discussed at length in [17], however it can find solutions with a fit-

ness/length ratio that other techniques do not seem to be able to reach.

In the real world this is usually one of the most important quality fac-

tor of a solution, regardless of the more or less lengthy search process

that ultimately found it. Therefore, we also present a few plots showing

the evolution of length along the generations, knowing perfectly well that

one generation represents enormously different computational efforts to

different techniques.

Although the issue of overfitting is not central to this work, we are using a

real world problem where the generalization ability is important. There-

fore, we present some results obtained in the test set, to show that none

of the modified techniques suffers from a decreased generalization abil-

ity that would prevent it from being successfully used in the real world.

Finally, in most plots and related text we do not discriminate between the

different Brood/Batch sizes except when we consider the differences to

be important.

6.1 Comparing fitness and solution length

Figure 1a shows the best training fitness plotted against the average

length of the solutions in the population, for Standard GP, the differ-

ent sizes of Brood/Batch Recombination, and Operator Equalisation. Fig-

ure 1b is similar to 1a except that instead of plotting the best training

fitness, it plots the test fitness of the best training individual. It is im-

mediately apparent that, although some variants of Brood/Batch Recom-

bination exhibit a more desirable bloating behavior (fitness/length ratio)

than Standard GP, most of the differences seem to be caused by the sim-

ple fact that producing more offspring allows for more search, since the

general trend is the same. Also Operator Equalisation is allowed more

search due to the number of rejected individuals, however its behavior is

not even remotely approximated by any of the Brood/Batch variants.
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Fig. 1: Standard GP versus Brood/Batch Recombination versus Operator Equalisation. (a) Best training fitness versus average solution length; (b) Test fitness (of the

best training individual) versus average solution length; (c) Average solution length versus generations.
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Fig. 2: Dynamic Standard GP versus Dynamic Brood/Batch Recombination versus Operator Equalisation. (a) Best training fitness versus average solution length; (b)

Test fitness (of the best training individual) versus average solution length; (c) Average solution length versus generations.
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The stabilization of average solution length exhibited by Operator Equal-

isation had already been observed in other real world problems (e.g. [22,

20]). Figure 1c shows the evolution of the average solution length plotted

against the generations, where the differences in code growth are more

easily observed. For a visualization of the distribution of training and

test fitness and average solution length in the final generation consult

Figure 5.

Figure 2 is analogous to Figure 1 except that it refers to Standard GP and

Brood/Batch Recombination using Dynamic Limits. Like Brood/Batch Re-

combination, Dynamic Limits is a somewhat helpful modification by itself

(see Figure 4 for a direct comparison), but the effect of joining both ele-

ments is not cumulative, and once again Operator Equalisation remains

a far better technique in terms of bloating behavior. The usage of Dy-

namic Limits in Brood/Batch Recombination causes larger differences in

the behavior of different Brood/Batch sizes, with size 2 (DynBrood2 and

DynBatch2) resulting in less code growth and less learning (see also Fig-

ure 5), which may simply be a result of less search.

6.2 Exploring the length distributions

Given the previous plots we are forced to conclude that the hybrid tech-

niques using Brood/Batch Recombination and Dynamic Limits do not con-

tain the same ingredients as Operator Equalisation. By design, the hy-

brid techniques should emulate the decisions of Operator Equalisation on

whether to accept or reject the individuals (large or small) that fall out-

side the limits of the target, so the difference must lie within the target

itself. Therefore, we now focus our attention on the distribution of solu-

tion lengths during the evolution, looking for an explanation to the unique

behavior of Operator Equalisation. In principle, given the same limits the

solution lengths should follow similar distributions in all the techniques,

since Operator Equalisation enforces a distribution that is “proportional”

to fitness (see Section 2.2), which is exactly what selection is supposed

to do.

Figure 3 contains some actual and target length distributions of different

techniques. The three plots in the first row (a,b,c) show typical length

distributions obtained by Standard GP, Dynamic Brood of size 2, and Op-

erator Equalisation. The height of the peaks is not important for this

discussion. DynBrood2 was chosen for being the hybrid technique with

the lowest expected difference to Standard GP, and it is interesting to

compare the length distributions of both.

Tab. 1: Numbers and acronyms of the 16 techniques used.

Number Acronym Number Acronym

1 StdGP 9 DynBrood2

2 DynStdGP 10 DynBrood5

3 Brood2 11 DynBrood10

4 Brood5 12 DynBatch2

5 Brood10 13 DynBatch5

6 Batch2 14 DynBatch10

7 Batch5 15 OpEq

8 Batch10 16 FlatOpEq

Tab. 2: Parameter settings common to all techniques.

Parameter Setting

Number of runs 30

Population size 500

Function and terminal sets {+,−,∗,/}, {x1, ...,x241}
Tree initialization and growth ramped max depth 6, limit 17

Fitness function root mean squared error

Selection for reproduction lexicographic tournament, size 10

Replication rate 0.1

Genetic operators crossover 0.9, mutation 0.1

Selection for survival non elitist, replace all

Stop criterion 50 generations
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Fig. 3: Examples of actual and target length distributions. (a) Typical length distribution of Standard GP; (b) Typical length distribution of DynBrood2; (c) Typical length

distribution of Operator Equalisation; (d) Target length distribution that originated the distribution in plot c; (e) Typical target length distribution of Operator

Equalisation with flat target; (f) Length distribution originated by the target in plot e. All frequencies above 25 are not shown.
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There seems to be no substantial difference in terms of the larger individ-

uals, at least nothing typical was evident among the 20 runs. However, in

terms of the smaller individuals the effect of Brood Recombination can be

clearly seen. While Standard GP keeps producing (and consequently ac-

cepting) small individuals long after the distribution is centered on larger

lengths, Brood Recombination has the ability to prevent them from en-

tering the population, exhibiting an almost clean cut between zero fre-

quency and high frequency. This effect is stronger as the brood size in-

creases, and further so when using Batch instead of Brood (not shown).

We naturally assume that, given the similarity of both distributions, like

Standard GP Brood Recombination is also producing small individuals.

Therefore we conclude that they are indeed the most unfit ones and are

thus rejected in favor of the best of the brood. According to the Crossover

Bias theory (see Section 1), this should act against bloat, but our results

show only a minimal effect, at least when compared to Operator Equali-

sation.

The length distribution of Operator Equalisation (Figure 3c) is completely

different from the previous ones. Instead of showing a clear preference

for given lengths, this distribution spreads the individuals across most of

the available bins, including the bins of the smaller lengths that presum-

ably contain the worst individuals. This surprising “flatness” was found to

be the main characteristic of all the 20 distributions of Operator Equalisa-

tion. Further investigation revealed that these distributions are the result

of following targets that are mostly uniform, a truly unexpected finding.

The plot of Figure 3d shows the target that originated the distribution

shown on plot c. Had the target been faithfully followed, the actual dis-

tribution would be even flatter, but the several rejections and overrides

gave it a less artificial look.

The explanation for such a flat uniform target became clear after realizing

that the diversity and amplitude of fitness values that occur in this real

world problem almost guarantees the presence of very unfit outliers in

the population, practically every generation. These fitness values are so

much worse than the others that, compared to them, all the rest looks

the same, and all the bins end up getting the same capacity. Removing

these outliers before calculating the target may prove to be a difficult

task, since once we remove the first lot others will appear in the new

distribution. An obvious improvement is to use the best or median fitness

of each bin, instead of the average, to calculate the target, but even so

the problem persists when some bins contain only very unfit individuals.

But is this really a problem that needs to be solved? Certainly an unin-

tended feature, but also the most probable reason why Operator Equali-

sation exhibits a behavior so different and so much better than all other

techniques, at least where bloat is concerned. No matter where the best

individuals are found, Operator Equalisation maintains an almost uniform

search across the entire set of explored lengths, thus increasing the prob-

ability of finding smaller solutions. In the limit, the number of individuals

in the population will not be enough to ensure one individual per bin, but

let us concentrate on the most immediate issues for now.

6.3 Enforcing a flat target

Assuming the nearly flat length distribution target is the true responsible

for the success of OpEq in this symbolic regression problem, we wonder

what improvements we can achieve if we enforce a truly flat distribution.

So we implemented an Operator Equalisation variant that does not calcu-

late the capacity of the bins with Equation 2, but instead gives the same

capacity to all of them. All the rest, in particular the decision to create

new bins, did not suffer any changes. Note that for most problems the

actual length distribution is never exactly equal to the target, because

when bins get full the target begins to be overridden. In our particular

problem this is aggravated by the fact that all the arithmetic operators

in the function set are binary, making it impossible to create solutions of

even length. This means that half of the bins of our perfectly flat target

are never filled, and half or the individuals of the population are guaran-

teed to override the target. In fact, because of this limitation caused by

the set of exclusively binary functions, to facilitate the visualization none

of the plots of Figure 3 shows the bins of even length.

Figure 3e shows a typical target distribution of the new variant of Opera-

tor Equalisation, that we call FlatOpEq, while Figure 3f shows the actual

distribution obtained by using this target. It is not completely flat for the

reasons stated above, but it is typically much flatter than the actual dis-

tributions of OpEq, like the one in Figure 3c. Next, we compare FlatOpEq

with the remaining techniques, in terms of fitness and solution length.

Figure 4 shows a direct comparison between Standard GP with and with-

out Dynamic Limits, Operator Equalisation with and without flat target,

and another choice of a Brood/Batch technique, in this case Batch5 for

being the one with the more desirable bloating behavior among all the

Brood/Batch variants, with or without Dynamic Limits.
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Figure 5 shows boxplots of the training and test fitness values, and the

solution lengths, obtained in the final generations of the 20 runs. The

FlatOpEq technique can reach significantly better fitness values than all

other techniques (determined by non-parametric ANOVA with p = 0.05),

but once again the explanation may simply be that more rejections mean

more search, hence more learning. In terms of test fitness there are

no statistically significant differences (Figure 5b), however it is worth

noting that somewhere along the evolution FlatOpEq is able to reach

better test fitness than the other techniques, before overfitting occurs

(Figure 4b). The average solution length is basically the same for both

Operator Equalisation variants at the end of the run, for despite doing

more search FlatOpEq stabilizes the average solution length at around

the same values as OpEq.

All comparisons made, there seems to be no disadvantage in artificially

flattening the target distribution of Operator Equalisation.

7 Conclusions and Future Work

We have hypothesized that the two key ingredients that make Opera-

tor Equalisation such a successful bloat control method can be found in

older methods such as Brood Recombination and Dynamic Limits. With

Brood Recombination, the usually very unfit small individuals frequently

produced by the parents are rejected in favor of the best of the brood.

According to the Crossover Bias theory, eliminating the bias to introduce

small unfit individuals in the population helps control bloat. With Dy-

namic Limits, the individuals larger than any others already found in the

population are only accepted if they prove to be the best ever found dur-

ing the run. This prevents unnecessarily large individuals to enter the

population, thus controlling bloat.

We reassembled Operator Equalisation by taking a Standard GP system

and coupling it with these two ingredients, obtaining a hybrid method

which we tested in a hard real world regression problem. None of the

several variants tested was able to produce a bloating behavior remotely

similar to the one of Operator Equalisation. We took a deeper look at

the dynamics of the search and found that, for previously unsuspected

reasons, the target length distribution used by Operator Equalisation is

typically nearly flat, contrasting with the peaky and well delimited tar-

gets of all the other approaches. Finally we introduced a new Operator

Equalisation variant that enforces an artificially created flat target, and

verified that the results were even better than the previous version.

It seems like the flatter the target, the most success is achieved in bloat

control. Instead of avoiding small unfit individuals, the flat target actually

prevents the search from moving away from the shorter lengths, even

long after better and larger solutions have been found. It simply spreads

individuals across all the previously visited lengths, ensuring that search

does not abandon any of them.

After absorbing these results it becomes quite trivial that, to avoid bloat

and reach smaller solutions, we must keep searching among the shorter

lengths. The success of Operator Equalisation is undeniable, but the cur-

rent results force us to look back at its previous successes and check if

they were simply the result of an unintended flat distribution target, or if

the Crossover Bias theory actually plays a significant role in the process.

We realize just now that a flat target may appear as a consequence of,

not only extremely high, but also extremely low, phenotypic diversity,

and the benchmark parity problems immediately come to mind as cases

to check. We leave this as future work. We also intend to provide results

based on some measure of computational effort, for example the number

of evaluations performed, instead of the number of generations, to make

the comparison between techniques more objective and fair.

We finish with the ironic remark that the original meaning of equalization

was, not surprisingly, flattening the signal along the entire spectrum.

Acknowledgments

This work was partially supported by FCT (INESC-ID multiannual funding)

through the PIDDAC Program funds. The author thanks project PTDC/EIA-

CCO/103363/2008 from FCT, Portugal. Thank you also to the anonymous

reviewers for all their helpful comments.

References

[1] L. Altenberg. The evolution of evolvability in genetic programming.

In K. E. Kinnear, Jr., editor, Advances in Genetic Programming, chap-

ter 3, pages 47–74. MIT Press, 1994.

[2] F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi. Genetic pro-

gramming for human oral bioavailability of drugs. In M. Keijzer, et al.,

editors, GECCO 2006: Proceedings of the 8th annual conference on

Genetic and evolutionary computation, volume 1, pages 255–262,

Seattle, Washington, USA, 8-12 July 2006. ACM Press.

SIGEVOlution Volume 5, Issue 3 19



EDITORIAL

[3] F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi. Genetic pro-

gramming for computational pharmacokinetics in drug discovery

and development. Genetic Programming and Evolvable Machines,

8(4):413–432, Dec. 2007. special issue on medical applications of

Genetic and Evolutionary Computation.

[4] M. Brameier and W. Banzhaf. Neutral variations cause bloat in linear

GP. In C. Ryan, et al., editors, Genetic Programming, Proceedings of

EuroGP’2003, volume 2610 of LNCS, pages 286–296, Essex, 14-16

Apr. 2003. Springer-Verlag.

[5] S. Dignum and R. Poli. Generalisation of the limiting distribution of

program sizes in tree-based genetic programming and analysis of

its effects on bloat. In D. Thierens, et al., editors, GECCO ’07: Pro-

ceedings of the 9th annual conference on Genetic and evolutionary

computation, volume 2, pages 1588–1595, London, 7-11 July 2007.

ACM Press.

[6] S. Dignum and R. Poli. Crossover, sampling, bloat and the harmful

effects of size limits. In M. O’Neill, et al., editors, Proceedings of the

11th European Conference on Genetic Programming, EuroGP 2008,

volume 4971 of Lecture Notes in Computer Science, pages 158–169,

Naples, 26-28 Mar. 2008. Springer.

[7] S. Dignum and R. Poli. Operator equalisation and bloat free GP. In

M. O’Neill, et al., editors, Proceedings of the 11th European Confer-

ence on Genetic Programming, EuroGP 2008, volume 4971 of Lec-

ture Notes in Computer Science, pages 110–121, Naples, 26-28 Mar.

2008. Springer.

[8] S. Gelly, O. Teytaud, N. Bredeche, and M. Schoenauer. Universal con-

sistency and bloat in GP. Revue d’Intelligence Artificielle, 20(6):805–

827, 2006. Issue on New Methods in Machine Learning. Theory and

Applications.

[9] J. R. Koza. Genetic Programming: On the Programming of Comput-

ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA,

1992.

[10] N. F. McPhee and J. D. Miller. Accurate replication in genetic program-

ming. In L. Eshelman, editor, Genetic Algorithms: Proceedings of

the Sixth International Conference (ICGA95), pages 303–309, Pitts-

burgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

[11] R. Poli, W. B. Langdon, and S. Dignum. On the limiting distribution

of program sizes in tree-based genetic programming. In M. Ebner,

et al., editors, Proceedings of the 10th European Conference on Ge-

netic Programming, volume 4445 of Lecture Notes in Computer Sci-

ence, pages 193–204, Valencia, Spain, 11-13 Apr. 2007. Springer.

[12] R. Poli, N. F. McPhee, and L. Vanneschi. Analysis of the effects of

elitism on bloat in linear and tree-based genetic programming. In

R. L. Riolo, et al., editors, Genetic Programming Theory and Practice

VI, Genetic and Evolutionary Computation, chapter 7, pages 91–111.

Springer, Ann Arbor, 15-17May 2008.

[13] R. Poli, N. F. McPhee, and L. Vanneschi. Elitism reduces bloat in ge-

netic programming. In M. Keijzer, et al., editors, GECCO ’08: Pro-

ceedings of the 10th annual conference on Genetic and evolutionary

computation, pages 1343–1344, Atlanta, GA, USA, 12-16 July 2008.

ACM.

[14] R. Poli, N. F. McPhee, and L. Vanneschi. The impact of population size

on code growth in GP: analysis and empirical validation. In M. Keijzer,

et al., editors, GECCO ’08: Proceedings of the 10th annual confer-

ence on Genetic and evolutionary computation, pages 1275–1282,

Atlanta, GA, USA, 12-16 July 2008. ACM.

[15] S. Silva and J. Almeida. Dynamic maximum tree depth. In E. Cantú-

Paz, et al., editors, Genetic and Evolutionary Computation – GECCO-

2003, volume 2724 of LNCS, pages 1776–1787, Chicago, 12-16 July

2003. Springer-Verlag.

[16] S. Silva and E. Costa. Dynamic limits for bloat control in genetic pro-

gramming and a review of past and current bloat theories. Genetic

Programming and Evolvable Machines, 10(2):141–179, 2009.

[17] S. Silva and S. Dignum. Extending operator equalisation: Fitness

based self adaptive length distribution for bloat free GP. In L. Van-

neschi, et al., editors, Proceedings of the 12th European Confer-

ence on Genetic Programming, EuroGP 2009, volume 5481 of LNCS,

pages 159–170, Tuebingen, Apr. 15-17 2009. Springer.

[18] S. Silva and L. Vanneschi. Operator equalisation, bloat and overfit-

ting: a study on human oral bioavailability prediction. In G. Raidl,

et al., editors, GECCO ’09: Proceedings of the 11th Annual confer-

ence on Genetic and evolutionary computation, pages 1115–1122,

Montreal, 8-12 July 2009. ACM.

SIGEVOlution Volume 5, Issue 3 20



EDITORIAL

[19] S. Silva and L. Vanneschi. Bloat free genetic programming: Applica-

tion to human oral bioavailability prediction. International Journal of

Data Mining and Bioinformatics, to appear.

[20] S. Silva, M. Vasconcelos, and J. Melo. Bloat free genetic programming

versus classification trees for identification of burned areas in satel-

lite imagery. In C. Di Chio, et al., editors, Applications of Evolution-

ary Computation: EvoApplications 2010: Evolutionary Computation

in Image Analysis and Signal Processing (EvoIASP), volume 6024 of

LNCS, Istanbul, 7-9 Apr. 2010. Springer.

[21] W. A. Tackett. Recombination, Selection, and the Genetic Construc-

tion of Computer Programs. PhD thesis, University of Southern Cali-

fornia, Department of Electrical Engineering Systems, USA, 1994.

[22] L. Vanneschi and S. Silva. Using operator equalisation for prediction

of drug toxicity with genetic programming. In L. S. Lopes, et al., ed-

itors, Progress in Artificial Intelligence, 14th Portuguese Conference

on Artificial Intelligence, EPIA 2009, volume 5816 of LNAI, pages 65–

76, Aveiro, Portugal, Oct. 12-15 2009. Springer.

About the authors

Sara Silva is a senior researcher of the Knowledge Dis-

covery and Bioinformatics (KDBIO) group at INESC-ID

Lisboa, Portugal, and an invited researcher of the Evo-

lutionary and Complex Systems (ECOS) group at CISUC,

Portugal. She has a BSc (5 years, finished in 1996) and a

MSc (finished in 1999) in Informatics by the Faculty of Sciences of the

University of Lisbon, Portugal, and a PhD (finished in 2008) in Infor-

matics Engineering by the Faculty of Sciences and Technology of the

University of Coimbra, Portugal. After graduation she used neural

networks and genetic algorithms in several interdisciplinary projects

ranging from remote sensing and forest science to epidemiology and

medical informatics. She started her research on Genetic Program-

ming (GP) in 2002, studying the bloat problem. Her main contribu-

tions to this field were the Dynamic Limits and Resource-Limited GP

bloat control methods, and the developments that put into practice

the new Operator Equalisation method. Her current main research

interests are bloat and overfitting in GP, and how they relate to each

other, and the effective and efficient usage of GP in real life prob-

lems within the earth sciences and bioinformatics domains. She is

a member of the editorial board of Genetic Programming and Evolv-

able Machines, and the creator and developer of GPLAB - A Genetic

Programming Toolbox for MATLAB.

Homepage: http://kdbio.inesc-id.pt/~sara/

Email: sara@kdbio.inesc-id.pt

SIGEVOlution Volume 5, Issue 3 21

http://kdbio.inesc-id.pt/~sara/
mailto:sara@kdbio.inesc-id.pt


EDITORIAL

(a) (b) (c)

0 100 200 300

25

30

35

40

45

50

Average Solution Length

B
e

s
t 

T
ra

in
in

g
 F

it
n

e
s
s

StdGP

DynStdGP

Batch5

OpEq

FlatOpEq

0 100 200 300

25

30

35

40

45

50

Average Solution Length

T
e

s
t 

F
it
n

e
s
s

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Generation

A
v
e

ra
g

e
 S

o
lu

ti
o

n
 L

e
n

g
th

Fig. 4: Standard GP with and without Dynamic Limits versus one of the Brood/Batch techniques (Batch5) versus Operator Equalisation with and without flat target. (a)

Best training fitness versus average solution length; (b) Test fitness (of the best training individual) versus average solution length; (c) Average solution length

versus generations.
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Fig. 5: Boxplots of all the 16 techniques used (see Table 1 for their acronyms). (a) Best training fitness; (b) Test fitness (of the best training individual); (c) Average

solution length. Values obtained in the last generation of each of the 20 runs. Many outliers not shown in plot b.
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Calls and Calendar

January 2012

Learning and Intelligent OptimizatioN Conference - LION 6

January 16-20, 2012, Paris, France

Homepage: http://www.intelligent-optimization.org/LION6/

Call for Papers: www

Deadline October 14, 2011

Notification to authors: November 28, 2011

Conference dates: January 16-20, 2012

Camera ready for post-proceedings: February 24, 2012

The LION conference aims at exploring the intersections between ma-

chine learning, artificial intelligence, mathematical programming and al-

gorithms for hard optimization problems. The main purpose of the event

is to bring together experts from all these areas to present and discuss

new ideas, new methods, general trends, challenges and opportunities in

applications as well as in research aiming at algorithmic advances. The

conference program will consist of plenary presentations, introductory

and advanced tutorials, technical presentations, and it will give ample

time for discussions.

Relevant Research Areas

LION 6 solicits contributions dealing with all aspects of learning and intel-

ligent optimization. Topics of interest include, but are not limited to:

Metaheuristics such as tabu search, iterated local search, evolution-

ary algorithms, ant colony optimization, particle swarm optimiza-

tion, and memetic algorithms

Hybridizations of metaheuristics with other techniques for optimiza-

tion

Hyperheuristics and automatic design of heuristics

Machine learning-aided search and optimization

Algorithm portfolios and off-line tuning methods

Reactive search optimization, autonomous search, adaptive and

self-adaptive algorithms

Specific adaptive metaheuristic techniques applied to propositional

satisfiability, scheduling and planning, routing and logistics prob-

lems

Interface(s) between discrete and continuous optimization

Algorithms for dynamic, stochastic and multi-objective problems

Multiscale and multilevel methods

For all the previous approaches:

Experimental analysis and modeling

Parallelization techniques

Theoretical foundations

Innovative applications

High-quality scientific contributions to these topics are solicited, in addi-

tion to advanced case studies from interesting, high-impact application

areas.
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Submission Details

LION 6 accepts the following three submission types:

Long paper: original novel and unpublished work (max. 15 pages in

Springer LNCS format);

Short paper: an extended abstract of novel work (max. 4 pages in

Springer LNCS format);

Work for oral presentation only (in any Latex format, no page re-

striction). For example work already published elsewhere, which is

relevant and which may solicit fruitful discussion at the conference.

Further Information

Up-to-date information will be published on the web site www.intelligent-

optimization.org/LION6. For information about local arrangements, reg-

istration forms, etc., please refer to the above-mentioned web site or

contact the organizers.

LION 6 Conference and Technical co-chairs

Youssef Hamadi, Microsoft Research, UK (youssefh@microsoft.com)

Marc Schoenauer, INRIA, France (Marc.Schoenauer@inria.com)

April 2012

Evostar 2012 - EuroGP, EvoCOP, EvoBIO, EvoMusart

and EvoApplications

April 11-13, 2012, Malaga, Spain

Homepage: http://www.evostar.org

Flyer: pdf

Deadline November 30, 2011

Notification to authors: January 14, 2012

Camera-ready deadline: February 5, 2012

evo* comprises the premier co-located conferences in the field of

Evolutionary Computing: eurogp, evocop, evobio, evomusart and

evoapplications.
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Featuring the latest in theoretical and applied research, evo* topics in-

clude recent genetic programming challenges, evolutionary and other

meta-heuristic approaches for combinatorial optimization, evolutionary

algorithms, machine learning and data mining techniques in the bio-

sciences, in numerical optimization, in music and art domains, in image

analysis and signal processing, in hardware optimization and in a wide

range of applications to scientific, industrial, financial and other real-

world problems.

eurogp (flyer)

15th European Conference on Genetic Programming Papers are sought

on topics strongly related to the evolution of computer programs, ranging

from theoretical work to innovative applications.

evocop (flyer)

12th European Conference on Evolutionary Computation in Combinato-

rial Optimization Practical and theoretical contributions are invited, re-

lated to evolutionary computation techniques and other meta-heuristics

for solving combinatorial optimization problems.

evobio (flyer)

10th European Conference on Evolutionary Computation, Machine Learn-

ing and Data Mining in Computational Biology Emphasis is on evolu-

tionary computation and other advanced techniques addressing impor-

tant problems in molecular biology, proteomics, genomics and genetics,

that have been implemented and tested in simulations and on real-life

datasets.

evomusart (flyer)

1st International Conference and 10th European Event on Evolutionary

and Biologically Inspired Music, Sound, Art and Design

evoapplications (flyer)

European Conference on the Applications of Evolutionary Computation

evocomnet

9th European event on nature-inspired techniques for telecommu-

nication networks and other parallel and distributed systems

evocomplex

3rd European event on algorithms and complex systems

evofin

6th European event on evolutionary and natural computation in

finance and economics

evogames

4th European event on bio-inspired algorithms in games

evohot

7th European event on bio-inspired heuristics for design automa-

tion

evoiasp

14th European event on evolutionary computation in image anal-

ysis and signal processing

evonum

5th European event on bio-inspired algorithms for continuous pa-

rameter optimisation

evopar

1st European event on parallel and distributed Infrastructures

evorisk

1st European event on computational intelligence for risk man-

agement, security and defence applications

evostim

7th European event on nature-inspired techniques in scheduling,

planning and timetabling

evostoc

9th European event on evolutionary algorithms in stochastic and

dynamic environments

evotranslog

6th European event on evolutionary computation in transporta-

tion and logistics
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July 2012

GECCO 2012 - Genetic and Evolutionary Computation Conference

July 7-11, 2012, Philadelphia, PA, USA

Homepage: http://www.sigevo.org/gecco-2012

Deadline January 13, 2012

Author notification: March 13, 2012

Workshop and tutorial proposals submission: November 07, 2011

Notification of workshop and tutorial acceptance: November 28, 2011

The Genetic and Evolutionary Computation Conference (GECCO-2012)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

Organizers

General Chair: Jason Moore

Editor-in-Chief: Terence Soule

Publicity Chair: Xavier Llorá

Tutorials Chair: Gabriela Ochoa

Students Chair: Josh Bongard

Workshops Chair: Bill Rand

Competitions Chairs: Daniele Loiacono

Business Committee: Wolfgang Banzhaf

Marc Schoenauer

EC in Practice Chairs: Jörn Mehnen

Thomas Bartz-Beielstein,

David Davis

Important Dates

Paper Submission Deadline January 13, 2012

Decision Notification March 13, 2012

Camera-ready Submission April 9, 2012

To Propose a Tutorial or Workshop

A detailed call for workhop and tutorial proposals will be posted later

so stay tuned! Meanwhile, for enquiries regarding tutorials contact

gecco2012tutorials@sigevolution.org while for enquiries about work-

shops contact gecco2012workshops@sigevolution.org.

More Information

Visit www.sigevo.org/gecco-2012 for information about electronic sub-

mission procedures, formatting details, student travel grants, the latest

list of tutorials and workshop, late-breaking papers, and more.

Contact

For general help and administrative matters contact GECCO support at

gecco2012@sigevolution.org

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.
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September 2012

PPSN 2012 – International Conference on Parallel Problem

Solving From Nature

September 1-5, 2012, Taormina, Italy

Homepage: http://www.dmi.unict.it/ppsn2012/

Call for paper: www

Email: ppsn2012@dmi.unict.it

Paper Submission Deadline: March 15, 2012

Author Notification: June 1, 2012

Workshop Proposals Submission: October 15, 2011

PPSN XII will showcase a wide range of topics in Natural Computing

including, but not restricted to: Evolutionary Computation, Quantum

Computation, Molecular Computation, Neural Computation, Artificial Life,

Swarm Intelligence, Artificial Ant Systems, Artificial Immune Systems,

Self-Organizing Systems, Emergent Behaviors, and Applications to Real-

World Problems.

Paper Presentation

Following the now well-established tradition of PPSN conferences, all ac-

cepted papers will be presented during small poster sessions of about 16

papers. Each session will contain papers from a wide variety of topics,

and will begin by a plenary quick overview of all papers in that session

by a major researcher in the field. Past experiences have shown that

such presentation format led to more interactions between participants

and to a deeper understanding of the papers. All accepted papers will be

published in the LNCS Proceedings.

Paper Submission

Researchers are invited to submit original work in the field of natural

computing as papers of not more than 10 pages. Authors are encouraged

to submit their papers in LaTeX. Papers must be submitted in Springer

Verlag’s LNCS style through the conference homepage, here.

IEEE Conference on Computational Intelligence and Games

(CIG-2012)

September 12-15, 2012, Granada, Spain

Homepage: http://geneura.ugr.es/cig2012/

Flyer: pdf

Submission deadline: April 15, 2012

Decision notification: June 1, 2012

Camera-ready submission: June 15, 2012

Conference: September 12-15, 2012

Aim and Scope

Games have proven to be an ideal domain for the study of computa-

tional intelligence as not only are they fun to play and interesting to

observe, but they provide competitive and dynamic environments that

model many real-world problems. Additionally, methods from compu-

tational intelligence promise to have a big impact on game technology

and development, assisting designers and developers and enabling new

types of computer games. The 2010 IEEE Conference on Computational

Intelligence and Games brings together leading researchers and practi-

tioners from academia and industry to discuss recent advances and ex-

plore future directions in this quickly moving field.
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Topics of interest include, but are not limited to:

Learning in games

Coevolution in games

Neural-based approaches for games

Fuzzy-based approaches for games

Player/Opponent modeling in games

CI/AI-based game design

Multi-agent and multi-strategy learning

Applications of game theory

CI for Player Affective Modeling

Intelligent Interactive Narrative

Imperfect information and non-deterministic games

Player satisfaction and experience in games

Theoretical or empirical analysis of CI techniques for games

Comparative studies and game-based benchmarking

Computational and artificial intelligence in:

• Video games

• Board and card games

• Economic or mathematical games

• Serious games

• Augmented and mixed-reality games

• Games for mobile platforms

The conference will consist of a single track of oral presentations, tutorial

and workshop/special sessions, and live competitions. The proceedings

will be placed in IEEE Xplore, and made freely available on the conference

website after the conference.

Conference Committee

General Chair: Antonio J. Fernández Leiva

Program Chairs: Simon Lucas, Sung-Bae Cho,

and Magy Seif El-Nasr

Publicity Chair: Antonio M. Mora García

Social Media Chair: Juan J. Merelo

Finance Chair: Pedro A. Castillo

Proceedings Chairs: Mike Preuss and Anna I. Esparcia

Competition Chair: Julian Togelius

Special Sessions and Tutorials Chair: Georgios Yannakakis

Local Chairs: Carlos Cotta Porras,

Antonio J. Fernández Leiva,

Antonio M. Mora García,

Juan J. Merelo,

and Pedro A. Castillo

Important Dates

Tutorial proposals: 15 March 2012

Paper submission: 15 April 2012

Decision Notification: 1 June 2012

Camera-ready: 15 June 2012

Conference: 12-15 September 2012

For more information please visit: http://geneura.ugr.es/cig2012/
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About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate in an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.

SIGEVOlution Volume 5, Issue 3 29

https://campus.acm.org/public/gensigqj/gensigqj_control.cfm?promo=QJSIG&offering=052&form_type=SIG
mailto:editor@sigevolution.org
http://www.sigevolution.org

	Introduction
	Operator Equalisation
	Distribution of program lengths
	Calculating the Target Distribution
	Following the Target Distribution

	Brood Recombination
	Dynamic Limits
	Experiments
	Test Problem
	Techniques and Parameters

	Results and Discussion
	Comparing fitness and solution length
	Exploring the length distributions
	Enforcing a flat target

	Conclusions and Future Work

