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Editorial

W
elcome back my friends to SIGEVOlution! We disappeared for a while, but we are now

back on the saddle again. GECCO-2011 ended less than two weeks ago, but it feels such

a long time since we were at the opening reception and at the Guinness Storehouse.

I want to take this opportunity to thank once more Michael O’Neill, Anthony Brabazon,

Irene Ward, and the UCD team for their hard work. They have been the best local team a general chair

could dream of! We all owe them an immense thank you!

This issue continues the fifth volume of SIGEVOlution. Another issue should be out soon after this one

to clear the backlog. In the first paper, Margaret Boden discusses the reasons both for believing and for

doubting that evolutionary art could be wholly free from personal signatures. In the second paper, Gerard

Howard and his colleagues present a spiking neuro-evolutionary system which implements memristors

as neuromodulatory connections. The paper was one of the best paper nominees at GECCO-2011 and it

is reprinted here with the permission of ACM (and the authors of course!). The issue ends with the usual

calendar of forthcoming events.

The cover is a shot by Dave Fagan, the UCD/GECCO-2011 official photographer; more photos are available

on the GECCO-2011 local arrangements blog. We need your help to collect all the photos and the videos

of GECCO-2011. So, please send all your GECCO-2011 shots to geccopictures@gmail.com or to me. The

best photo and the best video of GECCO-2011 will be awarded with an Amazon gift card!

This new issue comes to you thanks to Margaret A. Boden, Gerard Howard, Ella Gale, Larry Bull, Ben de

Lacy Costello, Andy Adamatzky, Cristiana Bolchini, and board members Dave Davis and Martin Pelikan.

And once again, I thank the UCD team, Michael O’Neill, Anthony Brabazon, Irene Ward, Eoin Murphy,

Miguel Nicolau, Alex Agapitos, John Mark Swafford, Nguyen Quang Uy, Wei Cui, Michael Fenton, Jonathan

Byrne, Clíodhna Tuite, Erik Hemberg, and Kerrie Sheehan.

Pier Luca
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Anonymity and Evolutionary Art

Margaret Boden, University of Sussex, Falmer, Brighton, BN1 9QJ, UK, M.A.Boden@sussex.ac.uk

Human artists typically have a personal signature, by which their individ-

ual authorship can be recognized. Modernist artists tried to avoid such

idiosyncracies, focussing on abstract structure instead–and welcomed

computers, accordingly. But even those computer artists who have delib-

erately tried to lose their signature have not managed to do so. Perhaps

evolutionary methods might help? Reasons are discussed both for be-

lieving and for doubting that evolutionary art could be wholly free from

personal signatures.

1 The Quest for Anonymity in Art

Artworks are typically attributable, by art historians and connoisseurs,

to a particular person. Indeed, Romantic views of art value the fact that

the individual artist’s ’personal signature’ enables one to recognize the

authorship of the work. This personal signature is not literally a signature.

Rather, it is a set of subtle features of the work, of which the actual artist

may not even be consciously aware [4].

Modernist artists, reacting against Romanticism, down-played the role

of the individual person in art. They stressed formal (often minimalist)

structure, not perceptible idiosyncracies. Typically, the art-object was

no longer celebrated as a unique artefact, nor the human artist as an

individual person.

This attitude was epitomized in an influential statement by the modernist

Sol LeWitt: “the idea becomes a machine that makes the art, [where] all

of the planning and decisions are made beforehand and the execution

is a perfunctory affair” [8, pag. 824]. Once the plan has been chosen,

LeWitt said, “The artist’s will is secondary to the [artmaking] process he

initiates from idea to completion” [9, item 7]. Indeed, he produced many

’remote’ artworks, where he faxed instructions intended to be followed

by anonymous people who, by following these instructions, would make

the work using standard off-the-shelf materials such as 2-inch by 2-inch

wooden strips. The Romantic ideal, of art as the expression of human

individuality, had been abandoned.

2 The Impersonality
of Computers

It’s not surprising, given the sentiments quoted above, that when com-

puters appeared on the scene many artists with modernist sympathies

welcomed them specifically for their impersonal, non-human, nature.

(Romantics, by contrast, recoiled from them in horror.)

At base, the reason for the existence of personal signatures lies in factors

concerning the economy of information processing in human minds [4].

Computers are only indirectly affected by such factors. And, of course,

they are immune to the motor habits of the programmer, and normally

cannot develop any motor habits of their own (as we’ll see in Section 3,

certain sorts of robot may be exceptions to that).
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The psychological basis for the personal signature therefore disappears.

Or, more accurately, it is pushed into the background. The aims and

imagination (and programming skills) of the computer artist will always

have idiosyncratic features, which may or may not be reflected in the

computer output. But for those mid-century artists who already wished

to obscure, or even escape from, their human individuality, it seemed

that the very impersonality of computers might help.

Today, that is still a very natural assumption. So much so, that three lead-

ing computer artists have recently felt the need to reassure newcomers

to the genre that if they want to set their individual stamp on the com-

puter’s behaviour, then they can. As they put it: “As a designer working

with generative processes [i.e. computer art/design] one may still wish to

leave a recognizable mark on a creation. This may be achieved statically

using fixed components with a trademark style.

A more interesting way to achieve this is to ensure either that the or-

ganization of the artefact bears the stamp of its designer, or that its be-

haviour falls within the gamut of work typically produced by the designer.

Of course the designer may not be interested in producing a recognizable

style, however the utilization of generative techniques does not preclude

this option” [10, 6.1]. We’ll return to the issue of “the organization of the

artefact [bearing] the stamp of its designer” in Section 4.

One of the first artists to welcome computers for their very imperson-

ality was the young Paul Brown. Visiting the “Cybernetic Serendipity”

exhibition in London in 1969, he was inspired by the hope that this new

methodology would enable him to do something he was already trying

to do: namely, to lose his personal signature. Now, some forty years

later, he is an internationally known computer artist. But his artworks

are still recognizable, to those familiar with his oeuvre, as Brown’s. Even

his very earliest pieces [5] have an evident visual kinship with his re-

cent/current work. In other words, it turned out that losing his individual

artistic stamp, as his modernist sympathies inclined him to do, was easier

said than done.

One reason is that Brown himself, after forty years as a professional artist,

still cannot say just what his personal signature is (i.e. just what needs

to be avoided). In general, recognising a particular artist’s signature and

describing it explicitly are two very different things [4, sectn. iii]. What-

ever it is in Brown’s case, it certainly is not a matter of a specific mark

(such as a particular form of ear-lobe) recurring in his work. It is more a

matter of an overall stylistic ’feel’ that he cannot pin down in words.

He had hoped as a young man that the clarity with which art-making has

to be defined if computers are involved might help him both to identify

his signature and (by changing the generative rules as a result) to lose

it. Reasonable enough hopes, one might think. But no: his computer-

generated work still betrays its human author’s individual hand. And this,

even though he has deliberately aimed for aesthetic anonymity.

It appears, then, that if someone wishes to use computers so as to lose

their personal signature, deliberate self-effacement in the hands-on prac-

tice of one’s art is not the way to do it. Can some other way of achieving

self-effacement be found?

3 Could Anonymity be Evolved?

Recently, Brown has been using computers in a new way in trying to

achieve his long-standing artistic goal. An interdisciplinary team, with

Brown as a leading member, has tried to evolve line-drawing robots

whose products are of some aesthetic interest (no more than that!), but

which do not carry the telltale traces of a work by Brown himself.

In evolutionary art in general, the selection at each generation can be

done interactively, by a human being making the comparisons, or auto-

matically by the program itself. In this particular case, interactive selec-

tion is best avoided, because it is likely to carry the personal mark of the

human artist. Even automatic selection, however, requires that a ’fitness

function’ be defined, which the program can use to make its selections.

(The fitness function itself may evolve, again either interactively or au-

tomatically.) As we’ll see in Section 4, this fact is the Achilles’ heel of

Brown’s current research.

The first obvious question to ask about this project–which is named Draw-

bots– is “Why evolve line-drawing gizmos, as opposed to simply design-

ing (programming/building) them?” The second is “Why use robots, as

opposed to computer graphics (i.e. programs for drawing images on pa-

per or virtual images in cyberspace)?”

The answer to the first question is that if the line-drawing computer sys-

tem has been evolved then, thanks to the many random mutations that

will have taken place, it has not been prespecified in detail by the artist-

programmer. Accordingly, there may (sic) be a chance of avoiding that

individual’s personal signature. Whether that “may” can, in practice or

even in principle, be replaced by a “will” is the key point at issue here.
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As for the second question, the answer is that a robot, being a mate-

rial object functioning in the physical world, can be affected not only by

its program and/or internal design but also by unexpected–and perhaps

serendipitous–events in the physical environment. Again, this offers a

means by which the programmer’s personal signature may be bypassed,

or anyway diluted. (An early example of this sort of thing occurred in

the 1970s, when the moving ’legs’ of a kinetic sculpture–alias a robot–

happened to scratch the wooden floor of London’s Royal Academy. Al-

though the RA was doubtless incensed, the sculptor, Darrell Viner, was in-

trigued. He was so “fascinated by the structure of the repetitive scratches

and their relationship to cross-hatching” that he went on to make art-

works produced by comparable, though simulated, means–[6, 283].

The “serendipity” in the physical events involved can even include cases

where a radically new feature appears in the robot’s behaviour. In a pre-

vious experiment done by a member of the Drawbots team, a popula-

tion of robots evolved a new sensory capacity–not merely an improved

sensory capacity–as a result of contingent, and previously unremark-ed,

facts about the physical environment [1]. That suggests the possibility

that a fundamentally transformative change in the Drawbots’ drawing-

style might occur. If so, then presumably the new style would not bear

Brown’s individual mark, even if the previous style had done so.

The Drawbots themselves are small wheeled vehicles carrying a re-

tractable pen. And the task in the team’s minds is line-drawing. By

that is meant not drawing pictures that represent real things (as both

stick-men and Renaissance cartoons do), nor even drawing geometrical

designs, but simply drawing lines . . . which can curve, cross, stop, and

approach each other in myriad ways–and which may sometimes change

in thickness too. Brown’s hope is that robots can be evolved which will

draw aesthetically acceptable lines that do not exhibit his personal sig-

nature. In other words, the fitness function/s to be followed by the robot

should guarantee aesthetic acceptability but should not be so ’rich’ as to

express his personal style.

In principle, that would not preclude there being a telltale identifier, or

quasi-signature (one can hardly say a “personal” signature), produced

by an evolved robot itself. This would be a pattern that distinguishes its

drawings from those of its siblings and close cousins. The evolution of

such patterns is in principle possible because new performance details

will follow from random mutations, and these details can be perpetuated

provided that they do not compromise fitness.

Such details could include drawn patterns or line-features discriminated

by the gizmo’s visual sensors. Indeed, a robot might even develop par-

ticular motor habits, driven by motor circuits conserved in its ’brain’ (see

Section 2). Suppose that a sudden movement, caused by a recently mu-

tated motor circuit, led to a mark that was then selected (along with

the rest of the drawing) by Brown. This might lead the motor circuit to

endure, forming the basis of a future motor habit. That habit could be

involved either in many different stylistic choices, or only in one (think of

an overall stylistic ’feel’ and of tell-tale ear-lobes, respectively). In short,

the general style that is selected via the fitness function could allow for

idiosyncratic expression (alias signatures) by different robots within the

same generation or lineage.

If the fitness function were to include measures of computational econ-

omy, the different robots might even develop quasi-signatures for much

the same (psychological) reasons that human beings do. However, it is

hardly likely that such patterns would arise as a matter of course, as they

do in the work of human artists. For the root of the personal signature,

as remarked above (see also [4, sectn. iii]), is the need for economy in

information processing within a highly complex system–a criterion that

does not apply in robots as simple as those being considered here.

Whether it is actually possible for the drawbots to lose the stamp of

Brown’s individual artistry depends on a number of things. One is the

extent to which Brown, or anyone else, can say just what his personal

signature consists in. If he knew that, he would be in a much better posi-

tion to try to avoid it. However, as explained in Section 2, he does not.

Possibly, the Drawbots research may help him towards a better–if still

incomplete–understanding of this. For in examining the various drawings

made by the drawbots, he will have to ask himself two questions: Is it

aesthetically acceptable? and Is it evidently a ’Brown’? In answering

that second question over and over again, as the drawing style mutates

across the generations, and in posing it to colleagues with an appropri-

ately practised critical eye, he may achieve a more explicit understanding

of just what his own style is. (Then again, he may not.) But that could

happen without his ever answering No to the second question. In that

case, he still would not have ’lost’ his signature, despite understanding

it more deeply. Whether the increased understanding would enable him

to dilute it, if not to shed it, in his (non-evolutionary) future work is an

interesting question.
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Another factor that will affect the likelihood of success in the project is the

extent to which aesthetic acceptability can rest on relatively primitive vi-

sual features. “Primitive”, here, means both simple and naturally salient.

For example, shininess (of satin, silver, polished ivory, lurex, chromium

. . . ) is relatively simple to discriminate, and naturally salient too. That’s

so for good evolutionary reasons, involving the fitness-enhancing nature

of reflective expanses of water [3, 8.iv.a]. In other words, it’s no accident

that shininess is aesthetically appealing to a very wide range of individ-

uals and cultures. Are there any features of line-drawings such as those

the drawbots could produce which are naturally attractive (and easily dis-

criminable) in a comparable way?

For example, if the drawbots were able to change pens, might they evolve

a preference for the shiny lines left by a silver-ink pen? They could do so,

if their visual apparatus could discriminate shininess. To be sure, the

robotics team would have to build reflectance into the fitness function:

no robot ’naturally’ prefers it. But reflectance is such an easily discrim-

inable property, and so near-universally liked by human beings, that the

team could not be accused of cheating were they to do that. (Some cul-

tural groups positively avoid shininess, regarding it as vulgar; but that

is irrelevant here, since this discriminatory attitude has developed pre-

cisely because the liking for shininess is so very common.) Nor would

putting silveriness into the fitness function result in drawings that display

Brown’s personal signature, for that (whatever it is) is not a matter of

shininess.

It’s easy to see that Brown’s authorial mark does not involve shininess.

What it does involve is less clear. Suppose it were to turn out that all the

perceptible features favoured (via the fitness function) by ’aesthetically

competent’ drawbots were relatively high-level and/or complex, with no

’natural’ attractiveness for human beings in general. In that case, their

drawings would probably be more specific to Brown’s personal style. His

project would have failed. However, “success” and “failure” here admit

of several levels. In the language used above, Brown’s signature may

become more or less diluted, even if it cannot be entirely lost.

Among the naturally discriminable features that are already being con-

sidered by the Drawbots team are holes, line-crossings, and fractals (of

varying complexity or depth). But why should one expect any of these

things to be ’naturally’ attractive?

Well, consider fractals, for instance. These are ubiquitious in Nature,

both in living things and in environmental features such as rocks and

coastlines. According to the ’biophilia’ hypothesis [16], Homo sapiens

has evolved to respond favourably not only to conspecifics and other

aspects of our original ecological niche (the African Savannah) but also

to living things and natural environments in general. If that’s so, then

fractals might well have some natural attraction for us. That’s merely

an argument for plausibility. But there is also some evidence that frac-

tals of a certain kind are spontaneously favoured in art as in nature–and

even, as William Congreve said of music, that they can soothe the savage

breast. Richard Taylor claimed, in the late-1990s, that Jackson Pollock’s

canvasses, far from being random splashes of paint, have specific fractal

properties to which most viewers respond in a positive way, and by which

his paintings can be distinguished from fakes [13, 14]. Specifically, peo-

ple prefer those Pollock paintings which have a fractal dimension of 1.5

(his later paintings reach 1.8+). By comparison, people asked to choose

between natural images (or between simulated coastlines) prefer a frac-

tal dimension of 1.3. Taylor’s claim aroused huge interest (e.g. Spehar et

al. 2003), and was later followed by experiments showing that viewing

Pollock’s images can actually reduce stress [15].

Taylor’s early remarks about how to discriminate genuine Pollocks from

fakes, have recently been challenged [7]. One aspect of that challenge is

especially intriguing here: Katherine Jones-Smith reported that a careless

doodle done by her showed the same fractal properties as those found

in Pollock’s work. She didn’t ask whether the doodle had any aesthetic

value. To the contrary, she implied that, being a thoughtless scribble, it

did not. But if she had asked people whether they “liked” it, or whether

they preferred it to some other mark (maybe one produced accidentally),

she might have found that people ascribed some–albeit small–degree of

aesthetic merit to it. If that were so, it suggests that a suitably fractal-

favouring drawbot might make aesthetically acceptable (’natural’) draw-

ings that don’t show anyone’s individual mark: not hers, not Pollock’s,

and not Brown’s either.
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4 The Likelihood of Success–and What it Would
Mean

The discussion in Section 3 suggested that it is in principle possible for

Brown’s personal signature to be lost by evolved robots (even though it

is also possible for those robots to develop individual ’signatures’ of their

own). But what of the likelihood of this happening in practice? Are there

any specific reasons (beyond those mentioned in Section 3) to suspect

that the Drawbots project will succeed, or fail? And if it succeeds, would

it follow that the creativity exhibited in the drawings of the newly-evolved

drawbots must be attributed to the drawbots themselves, rather than to

Brown? ’No signature, no creative authorship’, perhaps?

As remarked above, the Achilles’ heel of the project lies in the fitness

function. This is true in two related senses, one philosophical and one

psychological.

First, if it is Brown who is continually deciding on the fitness function as

the research proceeds then perhaps it is his aesthetic judgement, and

also his artistic creativity, which is really responsible for the final draw-

ings? (For shorthand purposes, let’s ignore the creative role of the other

human beings on the team.) Many philosophers would say that there is

no “perhaps” about it, that of course Brown’s creativity lies behind what-

ever aesthetic interest the drawbots’ drawings happen to have. For they

believe that it is in principle absurd to ascribe creativity, or aesthetic

judgment, to any computer system–no matter how superficially impres-

sive its performance may be.

Their belief typically rests on assumptions about one or more of four

highly controversial issues, including intentionality and consciousness [2,

ch.11]. Accordingly, it can be challenged–though not definitively refuted.

However, even if one were happy to reject their claim as a general philo-

sophical position, that would not settle the question at issue here. For

in the specific case of the Drawbots research, the largely human source

of the fitness function is a distinct embarrassment for anyone wanting to

grant all the creative credit to the computer.

This embarrassment would persist whether or not the project succeeded

in its own terms–that is, irrespective of whether Brown’s signature had

been lost. For if the final fitness function were to exploit only what in

Section 3 were called “primitive” aesthetic properties, so that Brown as

an individual artist had become invisible in the final-stage drawings, it

would still be true that the aesthetic decisions involved in developing

the fitness function were such as are naturally made by human beings.

Brown’s hand (judgment) would still be there–but functioning as the hand

of a generic human being, not of a particular individual. (In other words,

the fitness function would describe the general style, without imposing

any detailed ’authorial’ implementation.)

That argument would apply even if the robots’ drawing style had shown a

truly fundamental change: a new style (presumably, a ’non-Brown’ style),

as opposed to an improved style. We saw in Section 3 that the physi-

cal ’embodiment’ of the drawbots makes it in principle possible for such

serendipitous change to occur. By definition, the stylistic change would

have been caused by some unconsidered and/or contingent feature of

the robots’ physical environment.

So Brown couldn’t be credited with initiating it. But he could, perhaps, be

credited with ’causing’ it, since the incipient change will be maintained

(and perhaps developed) only if it is approved/selected by his personal

decision or by the fitness function already evolved under his direction.

In such a case, Brown might be regarded as the creative spirit behind

the final drawings even though he never foresaw them, and even though

they are free of his personal mark.

What of the psychological question? Are there any psychological reasons

to expect that Brown will not be able to decide on a fitness function that

entirely avoids his personal signature?

One psychological consideration that is important in aesthetic judgments

(see [4]: sectn. iii) is relevance–considered in terms of computational

closeness and/or efficiency (Sperber and Wilson 1986). This issue is less

obviously crucial here than it would be if Brown were trying to evolve

robots capable of realistic representational drawings. If the drawbots

were intended to draw human faces, for instance, they had better in-

clude depictions of eyes, mouth, and even (the relatively less relevant)

ear-lobes.
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And they had better not add horns, or wings. But if a tinge of surrealism

were to be favoured (by Brown), then a horn-like protuberance appearing

in generation 1,000 might be selected and ’shaped’ so that recognizable

devilish/goat-like horns were visible at generation 9,000. The same might

occur if Brown felt that familiar myths about the Devil were relevant to

the ’topic’ of the drawings. In either case, Brown’s own judgements about

relevance would be reflected in the robots’ behaviour, and–to the extent

that these are idiosyncratic–so would his personal mark.

In fact, Brown has always been an abstract artist, so is not aiming to

evolve ’representational’ robots. Even so, issues of relevance–or rather,

issues of what he deems to be relevant–may arise.

Aesthetic acceptability depends in part on intelligibility. To be sure, intel-

ligibility may be more or less easy to achieve in differing artistic styles.

But utter chaos will satisfy nobody. In other words, one factor underly-

ing judgments of aesthetic acceptability is the computational effort that

is involved in comprehension. A ’messy’ line-drawing (or doodle), for

instance, may be unacceptable largely because its components do not

appear to be mutually relevant. That is, they do not appear to be ’coher-

ent’, or to ’make sense’. (Perhaps there are no closed curves, suggesting

bounded physical objects? And/or perhaps there are no T-junctions where

one line stops as it meets another, suggesting occlusion of a line/edge by

some other physical thing?)

These judgments are not usually conscious–and it may not be possible

to make them fully conscious. It follows that it may not be possible for

Brown to avoid them deliberately.

A closely related issue is the extent to which Brown can banish his own

preferred schemas from the fitness function. (Compare: evolving robots

to draw faces without eyes.) If he cannot, because these schemas are

so deeply entrenched in his mind and experience, they will inevitably be

reflected in the fitness function and therefore in the final drawings.

At that point, we come full circle to the issue discussed in Section 3

in terms of “simplicity” and “naturalness”. The more that the features

favoured in the fitness function are complex, culture-based, and idiosyn-

cratic to Brown, the less will the final-generation drawbots be free of his

personal stamp.

If the Brown signature is preserved, despite all his efforts, that will be

because he has found it necessary to build relatively ’rich’ criteria into

the fitness function. As we’ve seen, it is still an open question as to

how rich the final criteria of aesthetic fitness will need to be. If they

are all relatively simple, then Brown’s creative inspiration may seem less

important. At most, the fact that he is a human being will be relevant,

not the fact that he is Paul Brown. (Any idiosyncratic ’signature’ visible in

the drawings might be attributable to the evolutionary vicissitudes of the

robots themselves, as explained above.)

What if, contrary to all his hopes, Brown’s personal signature remains

still visible to experts (dare we say connoisseurs?) looking at the robots’

drawings? In such a case, and even if one were willing in principle to

grant creativity to some computer systems, it would seem bizarre to at-

tribute creativity to the drawbot. For the concept of the personal sig-

nature arose specifically in order to attribute a given work of art to one

creative source–normally, one human individual–rather than another [4,

sectn. ii]. The signature, in short, points to the person. This was recog-

nized by the computer artists (quoted in Section 2) who spoke of “the or-

ganization of the artefact [bearing] the stamp of its designer”. Whether

that telltale organization were deliberately designed, as they were as-

suming, or gradually evolved, as in the Drawbots project (’failure’ here

being supposed), it would point to one person: Brown.
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This paper presents a spiking neuro-evolutionary system which imple-

ments memristors as neuromodulatory connections, i.e. whose weights

can vary during a trial. The evolutionary design process exploits param-

eter self-adaptation and a constructionist approach, allowing the num-

ber of neurons, connection weights, and inter-neural connectivity pattern

to be evolved for each network. Additionally, each memristor has its

own conductance profile, which alters the neuromodulatory behaviour

of the memristor and may be altered during the application of the GA.

We demonstrate that this approach allows the evolutionary process to

discover beneficial memristive behaviours at specific points in the net-

works. We evaluate our approach against two phenomenological real-

world memristive implementations, a theoretical “linear memristor”, and

a system containing standard connections only. Performance is evaluated

on a simulated robotic navigation task.

1 Introduction

The memory-resistor, first implemented as a “memistor” by Widrow [39],

then theoretically characterized by Chua [3] and renamed a “memristor”,

has recently enjoyed a resurgence of interest from the research commu-

nity after being manufactured in silico by HP labs [36]. A memristor is a

fundamental passive two-terminal device whose state (memristance) is

both nonvolative and dependent on past activity. Nonvolative memory

[13] is perfect for low-power storage, and the device’s dynamic internal

state facilitates information processing.

These properties make the memristor an ideal candidate for use in

nanoscale neural architectures [22], where the memristor can function

as a synapse between - for example - Complementary Metal-Oxide Semi-

conductor (CMOS) neurons [27].

In this paper, we introduce the notion of a variable memristor e.g. a

memristor whose conductance profile can vary as a result of the evolu-

tionary process. As the conductance profile of the memristor is responsi-

ble for its behaviour, variable memristors can potentially impart a variety

of adaptive behaviours to the networks. We analyse the computational

properties of variable memristors when cast as synaptic connections in

evolutionary Spiking Neural Networks (SNNs [10]).

Neural architectures require some form of learning mechanism in order to

harness their computational power. A typical approach involves utilising

a form of Hebbian learning [12] to realise Spike Time Dependant Plastictiy

(STDP) [18], so that memristors between a presynaptic and postsynaptic

neuron can alter their efficiacy dependant on the spike timings of those

neurons. Here, the memristive element of the network allows the weight

of the connections to vary during a trial and provides a neuromodulatory

learning architecture which is shown to be beneficial to the evolutionary

design process.

We couple this neuromodulatory process with a constructive model of

neuro-evolution, whereby the evolutionary process can add or remove

both neurons and connections (which may be memristors) during the ap-

plication of the Genetic Algorithm (GA) [14].
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Our hypothesis is that the additional degrees of functional freedom

afforded to the variable memristors can be benficially harnessed by the

evolutionary process. To test this hypothesis we compare the variable

memristor networks to a number of alternates, (i) PEO-PANI networks

[8], (ii) HP networks, [36], (iii) idealised“linear memristor” networks,

(iv) networks comprised of static (e.g. non-memristive) connections. A

simulated robotics navigation task is selected for this purpose. To our

knowledge, this is the first approach that allows for the self-adaptation

of the characteristic performance of the memristors alongside neuroevo-

lution of both neurons and connection structure.

The remainder of the article is ordered as follows: Section 2 introduces

background research, Section 3 introduces the system, Section 4 details

SNN implementation, and Section 5 outlines the static memristors. Sec-

tion 6 details the discovery component and Section 7 details the topology

mechanisms used. Following this, Section 8 details the variable mem-

ristor implementaiton, Section 9 gives the environment and Section 10

shows the experimental setup and analyses the results of the experi-

ments that were carried out. Section 11 concludes with a discussion and

future research directions.

2 Background

2.1 Spiking Networks

Spiking Neural Networks (SNNs) are a relatively recent phenomenological

model of neural activity in the brain. In an SNN, a number of neurons are

linked via unidirectional, weighted connections that provide a method of

intra-network communication. The medium of communication is the ac-

tion potential, or spike, which is emitted from a neuron and received by all

connected neurons that the given neuron is presynaptic to. Each neuron

has a measure of excitation, known as "membrane potential". A spike

is emitted after an arbitrary neuron surpasses a certain level of excita-

tion within a given window of time. This build-up of membrane potentials

and release of postsynaptic current within a network is able to produce

dynamic activation patterns through time, providing increased comput-

ing power [20] [31] when compared to other network models, such as

the Multi Layer Perceptron (MLP) [30]. Two well-known formal SNN im-

plementations are the Leaky Integrate and Fire (LIF) model [10] and the

Spike Response Model (SRM) [10].

Neuro-evolution involves the use of evolutionary techniques to alter the

topology or weights of neural networks. A survey of various methods for

evolving both weights and architectures is presented in [9], similarly the

evolution of networks for robotics tasks is covered by Nolfi and Floreano

[24].

2.2 Memristors

Memristors (memory-resistors) are the fourth fundamental circuit

element, joining the capacitor, inductor and resistor. A memristor can be

defined as a resistor whose current resistance value (a) depends on the

previous charge that has passed through it (b) is nonvolatile. Formally,

a memristor is a passive two-terminal electronic device that is described

by the non-linear relation between the device terminal voltage, v,

terminal current, i (which is related to the charge q transferred onto the

device), and magnetic flux, ϕ, as (1) shows. Resistance increases or

decreases depending on the direction of the current.

v = M(q)i or i =W (ϕ)v (1)

The memristance (M) and memductance (W ) properties are both nonlin-

ear functions, defined in (2) as:

M(q) = dϕ(q)/dq and W (ϕ) = dq(ϕ)/dϕ (2)

Previous applications of memristors within neural paradigms include HP

memristors [36], which have been used in the manufacture of nanoscale

neural crossbars [32], and AgSi memristors, which have been shown to

function in neural architectures [17].

2.3 Synaptic Plasticity

Hebbian learning [12] is thought to account for adaptation and learning

in the brain. Briefly, Hebbian learning states that “neurons that fire to-

gether, wire together” - in other words in the event that a presynaptic

neuron causes a postsynaptic neuron to fire, the synaptic strength be-

tween those two neurons is increased so that such an event is more likely

to happen in the future. Such a mechanism allows for self-organising, cor-

related activation patterns.
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Integration of neuroevolution with heterogeneous neuromoduation rules

(which are similar to the different memristor types used here) is inves-

tigated by Soltoggio (e.g., [34]), and has been extended to robot con-

trollers [7]. Probabilistic spike emission, governed by modulatory Heb-

bian rules, have also been investigated [21]. Urzelai and Floreano [38]

present a nodes-only encoding scheme where synapses are affected by

four versions of the Hebb rule.

Previous studies have presented methods to implement STDP learning

using memristive synapses, notably [2][17][19][33]. Consistent between

the papers is the use of a “two-part spike”. The temporal coincidence be-

tween a spike sent backwards from a postsynaptic neuron and one sent

forwards from a presynaptic neuron is used to alter the voltage across the

memristor between those neurons; if it surpasses a threshold voltage the

weight of the synapse is altered. The main difference between [17][33]

and [2][19] is that in [17][33], the two-part spike is implemented as

a discrete-time stepwise waveform approximation, whereas [2][19] use

values calculated from continuous waveform equations, allowing them to

operate in continuous time.

3 The System

The system consists of a population of SNNs which are evaluated on a

robotics test problem, and altered via GA operation which is detailed in

Section 6. To introduce the terminology to be used throughout this paper:

each experiment lasts for 1000 evolutionary generations; each genera-

tion involves new networks in the population being evaluated on the test

problem (a trial). Each trial consists of a number of timesteps, which be-

gin with the reading of sensory information and calculation of action, and

end with the agent performing that action. Every timestep consists of 21

steps of SNN processing, at the end of which the action is calculated.

4 Spiking Network Implementation

We base our spiking implementation on the LIF model, although it must

be stressed that our model is heavily simplified in terms of the number

of simulation steps used per action calculation. Neurons can be stimu-

lated either by an external current or by connections from presynaptic

neurons. Each neuron has a membrane potential, y, where y > 0, which

slowly degrades over time.

As spikes are received by the neuron, the value of y is increased in the

case of an excitory spike, or decreased if the spike is inhibitory. If y
surpasses a positive threshold, ythresh, the neuron spikes and transmits

an action potential to every neuron to which it is presynaptic, with

strength relative to the connection weight between those two neurons.

The neuron then resets its membrane potential to some low number,

given in Section 10. At time t, the membrane potential of a neuron is

given as (3):

y(t +1) = y(t)+(I +a−by(t)) (3)

I f (y > ythresh)y = c (4)

Equation (4) shows the reset formula. Here, y(t) is the membrane poten-

tial at time t, I is the input current to the neuron, a is a positive constant, b
is the degradation (leak) constant and c is the reset membrane potential

of the neuron. A model of temporal delays is used so that, in the single

hidden layer only, a spike sent to a neuron not immediately neighbour-

ing the sending neuron is received x steps after it is sent, where x is the

number of neurons between the sending neuron and receiving neuron.

4.1 Action Calculation

Action calculation involves the current input state being repeatedly pro-

cessed 21 times by each network (an experimentally determined number

of steps). For the purposes of this paper, each network was initialised

with 6 input neurons (used to pass sensor values to the network), nine

hidden neurons, and 2 output neurons that are used to calculate the ac-

tion. Neurons are arranged into layers based on this classification. Each

output neuron had an activation window that recorded the number of

spikes produced by that neuron over the last 21 steps. To calculate the

three possible actions that a network could advocate, we classified the

spike trains at the two output neurons as being either low or high acti-

vated. A neuron was said to be highly activated if it had spikes in over

half (>11) of the positions in the sampling window after 21 steps; other-

wise it was said to have low activation. The combined spike trains at the

two output neurons translated to a discrete movement according to the

output activation strengths; (high, high) or (low, low) = forwards, (high,

low) = left turn, (low, high) = right turn, which were calculated once at

the end of each timestep. See Section 9.1 for precise details of sensory

state generation and possible actions.
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5 Memristive Connections

From the description of SNNs in Section 2.1 and that of memristors in

Section 2.2, the strength of a connection weight in a neural network can

be intuitively seen as the inverse memristance of that connection. The

impact of the memristor on the functionality of the network depends

on the memristive equations used. Next, we describe the equations

governing the three comparitive memristors; details on creating variable

memristors are given in Section 8.

5.1 HP Memristor

The HP memristor is comprised of thin-film TiO2 and TiO2−x, which have

different resistances. The boundary between the two compounds moves

in response to the charge on the memristor, which in turn alters the re-

sistance of the device. To allow for future self-adaptation, memristance

equations are refactored from the original, as given in [36]. The original

profiles, used for the static memristors, are recreated using β = 1.

In the following equations, W is the scaled weight (conductance) of the

connection, G is the unscaled weight of the connection, M is the memris-

tance, s f 1 and s f 2 are scale factors, Ro f f is the resistance of the TiO2, Ron

is the resistance of the TiO2−x , q is the charge on the device, qmin is the

minimum allowed charge, and β encompasses physical properties of the

device. Equations are presented in order of calculation.

s f 1 = 0.99/1−
(

1
−Ro f f Ronβqmin +Ro f f

)
(5)

s f 2 = 1/
(
−Ro f f Ronβ(Ron−Ro f f )
−RonRo f f β+Ro f f

s f 1
)
−1 (6)

q =

(
1

−Ro f f Ronβ

)( s f 1
(W+s f 2) −Ro f f

)
(7)

M =−Ro f f Ronβq+Ro f f (8)

G = 1
M (9)

W = Gs f 1− s f 2 (10)

5.2 PEO-PANI Memristor

The PEO-PANI memristor consists of layers of PANI, onto which Li+-doped

PEO is added [8]. We have phenomenologically recreated the perfor-

mance characteristics of the PEO-PANI memristor in terms of the HP

memristor, creating a memristance curve similar to that seen in [8]. Two

additional parameters, Gqmin and Gqmax , are the values of G when q is at

its minimum (qmin) and maximum (qmax) values respectively. As with the

HP equations, β = 1 will produce the static PEO-PANI profile.

qmax = Ron−Ro f f /−RonRo f f β (11)

Gqmin = 1/(−Ro f f Ronβqmin−Ron)+Ron (12)

Gqmax = 1/(−Ro f f Ronβqmax−Ron)+Ron (13)

The two scale factors are recalculated as

s f 1 = 0.99/(Gqmax −Gqmin) (14)

s f 2 = (Gqmin s f 1)−0.01 (15)

q =

(
1

((W + s f 2)/s f 1)−Ron
+Ron

)(
1

−Ro f f Ronβ

)
(16)

M = (−Ro f f Ronβq−Ron)+(1/Ron) (17)

G is calculated as in (9), and W as in (10).

5.3 Linear Memristor

The variable memristor alters W by 1/mem_li f etime, therefore it takes

mem_li f etime memristance events to linearly increase W from Ro f f to Ron.

5.4 STDP

In Section 2.3 a number of STDP implementations were reviewed. We

have elected to follow [33][17] in using discrete-time stepwise wave-

forms, as our SNNs operate in discrete time.
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Fig. 1: Displaying memristive profiles attained with different values of β when

fully charging, then fully discharging, the memristor. The x axis shows

1000 positive STDP events, followed by 1000 negative STDP events, as-

suming mem_li f etime=1000. Static HP and PEO-PANI memristors have

β=1

We augment each neuron in the network with a last_spike variable,

which is initially 0. When a neuron spikes, this value is set to some

positive number. At the end of each of the 21 steps that make up a

single timestep, each memristive connection is analysed by checking

the last_spike values of its presynaptic and postsynaptic neurons. If the

calculated value exceeds some positive spike_threshold, memristance

of the synapse occurs. Whether the connection increases or decreases

depends on which neuron has the highest last_spike value, providing

pre- to postsynaptic temporal coincidence. If the last_spike values are

identical, memristance does not occur. At the end of each step, each

last_spike value is then decreased by 1 to a minimum of 0, creating

a discrete stepwise waveform through time. Each STDP event either

increases or decreases q, by ∆q, as detailed in (18), which is then used

to calculate the weight as detailed in Sections 5.1 - 5.3. The memory of

the system is therefore contained in q.

∆q = (qmax−qmin)/mem_li f etime (18)

From Fig. 1 it can be seen that the amount of change in connection

weight depends heavily on the memristors value of β and current con-

nection weight. Both HP and PEO-PANI memristor types display increased

sensitivity (larger ∆W per STDP event) when β is a low number and either

W > 0.1 for HP networks, or W < 0.9 for PEO-PANI networks. Linear mem-

ristors display constant sensitivity.

6 Discovery Component

Having described the component parts of our networks, we now detail

the implementation of the GA that acts on them. In our GA, two parents

are selected fitness-proportionately, mutated, and used to create two

offspring. We use only mutation to explore weight space; crossover is

omitted as sufficient solution space exploration can be obtained via a

combination of self-adaptive weight and topology mutations; a view that

is reinforced in the literature, e.g. [29]. The offspring are inserted into

the population and two networks with the lowest fitness deleted. Parents

stay in the population competing with their offspring.

6.1 Self-adaptive Mutation

We utilise self-adaptive mutation rates as in Evolutionary Strategies (ES)

[28], to dynamically control the frequency and magnitude of mutation

events taking place in each network. This allows increased structural

stability in highly fit networks whilst allowing less fit networks to vary

more strongly per GA application. Here, the µ (0 < µ ≤ 1) value (rate of

mutation per allele) of each network is initialized uniformly randomly in

the range [0,0.25]. During a GA cycle, a parent’s µ value is modified as

in (19), the offspring then adopts this new µ, and mutates itself by this

value, before being inserted into the population.

µ−> µexpN(0,1) (19)

Only non-memristive networks can alter their connection weights via the

GA. Connection weights in this case are initially set during network cre-

ation, node addition, and connection addition randomly uniformly in the

range [0,1]. Memristive network connections are always set to 0.5, and

cannot be mutated from this value. This aims to force the memristive

networks to harness the plasticity of their connections during a trial to

successfully solve the problem.

7 Topology Mechanisms

In addition to self-adaptive mutation, we apply two evolutionary topology

morphology schemes to allow the modification of the spiking networks in

two ways; by adding/removing hidden layer nodes, and adding/removing

inter-neural connections.
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The effect of this self-adaptive, constructivist framework is to tailor the

evolution of the network to the complexity of the environment explicitly.

This allows each network to control its own architecture autonomously

in terms of (i) amount of mutation that takes place in a given network

at a given time (ii) adapting the hidden layer topology of the neural net-

works to reflect the complexity of the problem considered by the net-

work. Both memristive and non-memristive networks use these topology

mechanisms.

7.1 Constructivism

Constructivist learning postulates that neural structures are initially small

and sparsely connected [26]. Learning acts to add appropriate structure

(neurons/connections) until some satisfactory level of computing power

is attained; suitable specialized neural structures emerge as a result of

the learner’s interaction with its environment. Implementations include

Synapsing Variable Length Crossover (SVLC) [16], and its inspiration, the

Species Adaptive Genetic Algorithm (SAGA) [11]. Also relevant is Neuro

Evolution of Augmenting Topologies (NEAT) [35], which combines neu-

rons from a predetermined number of subpopulations to encourage di-

verse neural utility and enforce niche-based evolutionary pressure.

The implementation of constructivism in this system is based on that

used to evolve constructive SNNs in neural Learning Classifier Systems

(LCS) [15], due to the demonstrated utility of this approach when using

spiking neurons. Each network has a varying number of hidden layer neu-

rons (initially 9, and always > 0); additional neurons can be added or re-

moved from the single hidden layer. Constructivism takes place during a

GA cycle, after mutation. Two new self-adaptive parameters, ψ (0<ψ≤ 1)
and ω (0 < ω ≤ 1), are incorporated into the model. Here, ψ is the prob-

ability of performing a constructivism event and ω is the probability of

adding a neuron; removal occurs with probability 1−ω. Both have initial

values taken from a random uniform distribution, with ranges [0,0.5] for

ψ and [0,1] for ω. Offspring networks have their parents ψ and ω values

modified using (19) as with µ. Nodes created during constructivism are

initially excitatory with 50% probability, otherwise they are inhibitory.

7.2 Connection Selection

Automatic feature selection is a method of reducing the dimensionality

of the data input to a process by using computational techniques to se-

lect and operate exclusively on a subset of inputs taken from the entire

set. In the context of neural networks, the connection structure - as op-

posed to the connection weights - of artificial neural networks was first

evolved by Dolan and Dyer [5]. In this paper we allow each connection

to be individually enabled/disabled, a mechanism termed “Connection

Selection”. During a GA cycle a connection can be enabled or disabled

based on a new self-adaptive parameter τ (which is initialized and self-

adapted in the same manner as µ and ψ). If a connection is enabled for

a non-memristive network, its connection weight is randomly initialised

uniformly in the range [0,1], memristive connections are always set to

0.5. During a node addition event, new connections are set probabilisti-

cally, with P(connectionenabled) = 0.5. Connection selection is particularly

important to the memristive networks. As they cannot alter connection

weights via the GA, variance induced in network connectivity patterns

plays a large role in the generation of STDP in the networks.

8 Variable memristors

Despite being a field in its infancy, a number of different memristors have

been manufactured from a variety of different materials, including Ti02

[36], conductive polymer [8], AgSi [17], and crystalline oxides [6]. Unique

memristive profiles are being discovered regularly; for this reason it is

assumed that any evolved memristors will have an approximate physical

analogue and thus any results will be (eventually) physically replicable.

The notion that varied memristive behaviours could be combined in a sin-

gle network is an attractive one from a computing perspective, as more

functional degrees of freedom are afforded to the synapses. Addition-

ally, certain memristive behaviours may be more beneficial than others

in certain positions within the network. Mixing different types of synaptic

plasticity has been previously investigated by Soltoggio [34] , Maass and

Zador [21], and Urzelai and Floreano[38].
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To allow the memristive profiles of the connections to change, we self-

adapt β, which in reality is derived from the thickness of the device and

the mobility of the oxygen vacancies in TiO2 and TiO2−x. The self-adaptive

memristor profiles are allowed to range from HP-like to PEO-PANI-like pro-

files, each of which are governed by different equations, outlined in Sec-

tions 5.1 and 5.2. Because of this, we augment each memristor with

a type, which is set to either 0 and 1 on memristor initialisation, with

P=0.5 of each type being selected based on a uniform distribution. β is

then initialised randomly uniformly in the range [βmin, βmax]. If type = 0,

the refactored HP equations are used to calculate the profile of the de-

vice; otherwise the PEO-PANI equations are used. During GA activity, on

satisfaction of a new self-adaptive parameter ι, which is self-adapted as

with µ, a memristors β changes by +/−10% of the total range of β. If

a memristors new value of β surpasses a threshold βmax, the type of the

memristor is switched and a new β calculated as ∆β - βmax. In this way, a

smooth transition between the different profile types is provided.

9 Test Environment

Our chosen robotics simulator was the Webots platform [23], a test bed

that is popular amongst the research community; alternatives are sum-

marised [4]. Previous applications of Webots in the field of evolutionary

robotics include the application of incremental neuro-evolution to gener-

ate complex behaviours [37], and investigations into hierarchical neural

control [25].

9.1 The Agent

The agent was a simulated Khepera II robot with 8 light sensors and 8

distance sensors. At each timestep (64ms in simulation time), the agent

sampled its light sensors, whose values ranged from 8 (fully illuminated)

to 500 (no light) and IR distance sensors, whose response values ranged

from 0 (no object detected) to 1023 (object very close). All sensor read-

ings were scaled to the range [0,1] for computational reasons (0 being

unactivated, 1 being highly activated). Six sensors were used to com-

prise the input state for the SNN, three IR and three light sensors at posi-

tions 0, 2 and 5 as shown in figure 2(a). Additionally, two bump sensors

were added to the front-left and front-right of the agent to prevent it from

becoming stuck against an object.

(a) (b)

Fig. 2: (a)The sensory configuration of the simulated Khepera agent (b)The test

environment; the agent starts in the lower left triangle and must navigate

to the upper-right triangle, avoiding the central obstacle.

If either bump sensor was activated, an interrupt was sent causing the

agent to reverse 10cm and the agent to be penalised by 10 timesteps.

Movement values and sensory update delays were constrained by accu-

rate modelling of physical Khepera agent. Three actions were possible:

forward, (maximum movement on both left and right wheels based on

physical Khepera data) and continuous turns to both the left and right

(caused by halving the left/right motor outputs respectively).

9.2 Environment

The agent was randomly located within a walled arena - the environment

- which it could not leave, with coordinates ranging from [-1,1] in both x
and y directions. We constrained the agents initial starting position to a

triangle in the lower left-hand corner of the environment, where x+ y <

−1.5. Adding to the complexity of the environment, a three-dimensional

box was placed centrally in the arena, with vertices on “ground level” at

(x =−0.4, y =−0.4), (−0.4, 0.4), (0.4, 0.4), and (0.4, −0.4), and raised to a

height of z = 0.15. A light source, modelled on a 15 Watt bulb, was placed

at the top-right hand corner of the arena (x = 1, y = 1), which the agent

must approach. The environment is shown in figure 2(b).
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Tab. 1: Detailing performance t-test results (p values) for all systems in the experiment

Performance High fitness Neurons Connectivity ψ ω τ

SA-HP 0.036 0.146 0.198 0.316 0.08 0.002 0.09

SA-PEO 0.128 0.421 0.232 0.79 0.058 0.005 0.061

SA-LIN 0.132 0.048 0.520 0.227 0.865 0.008 0.915

SA-GA 0.077 0.532 0.046 0.019 0.478 0.005 0.017

When the agent reached the goal state (where x+ y > 1.6), the respon-

sible network received a constant fitness bonus of 2500, which was

added to the fitness function f outlined in (20). The denominator in

the equation expresses the difference between the position of the goal

state (1.6) and the current agent position (posx and posy), and st is the

number of timesteps taken to solve. The minimum value of this function

is capped so that f > 0. The fitness of an agent is calculated at the end

of every timestep, with the highest attained value of f during the trial

kept as the fitness value for that network. Optimal performance gives

f = 11800, which corresponds to 700 timesteps from start to goal state

with no collisions.

f = (1/(1.6− (|posx+ posy|)))×1000− st (20)

10 Experimental Setup

In the following experiments we gauged the impact of variable memristor

connections, comparing to benchmark systems comprised of homoge-

neous static HP, PEO-PANI and linear memristors, and constant connec-

tions. We refer to the various network types as follows: variable mem-

ristor = SA, static HP memristor = HP, static PEO-PANI memristor = PEO,

static linear memristor = LIN, non-memristive network = GA. All experi-

ments had a population size of 100 networks and were evolved for 1000

generations, with a maximum of 4000 timesteps per trial. SNN parame-

ters were initial hidden layer nodes=9, a = 0.3, b = 0.05, c = 0.0, cini = 0.5,

ythresh = 1.0 , output window size=21, last_spike = 3, spike_threshold = 4
. In memristive networks, all connections were memristive. Memristive

parameters were Ron = 0.01, Ro f f = 1, static β=1, βmin = 1, βmaxHP = 100,

βmaxPEO−PANI = 100 qmin = 0.0098, mem_li f etime = 1000.

The experiment was repeated ten times, the statistics recorded were the

averages of these ten runs. Every 20 trials, the current state of the sys-

tem was stored and used to create the results that follow. To facilitate

useful comparisons, we defined a notion of “performance”. As the start

location was tightly constrained, we say the performance of the system

is equal to the first trial in which the goal state is found, so that a lower

value indicated higher performance. This measure allowed us to perform

t-tests to compare the respective performances of the four systems. In

the following tables, “Performance” was the average performance as out-

lined above. “High fitness” refers to the average fitness of the highest-

fitness network in each run. “Neurons” were the average final connected

neurons per network in the population and “Connectivity” was the av-

erage percentage of enabled connections in the population. During a

trial, some of the memristive connections in the networks may experi-

ence STDP, altering their weights. After every trial, memristive connec-

tions were reset to their original values of 0.5.

10.1 Results

In solving the test problem, two general high-fitness strategies were em-

ployed by the SA networks. The first involved a chain of “forwards” ac-

tions, a number of “turn right” actions as the agent circumvented the

obstacle, and finished with successive “forwards” actions until the goal

state was reached. The second strategy was a mirror of the first, but

passing below the obstacle and turning left. In either case, STDP was

harnessed to turn the agent. HP-governed SA beta profiles were found to

quickly reduce synaptic efficiacy to the left (right) motor, causing petur-

bation of calculated action during turn by bringing that motor below the

“high activited” threshold.
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Fig. 3: An example evolved network. Light coloured neurons are excitory, dark

neurons are inhibitory

PEO-PANI-governed SA profiles to the same motor were used to swiftly

increase the level of spiking activity (usually in response to a light sensor

surpassing some threshold) until a “forwards” action was calculated after

the turn was completed. A typical evolved network is shown in Figure 3.

10.1.1 Performance

T-tests (data columns 1-4, Table 1) show a number of promising re-

sults. SA networks achieved statistically higher “performance” than HP

networks (p=0.036), and higher “high fitness” than networks LIN net-

works (p=0.048). Figure 4(a) shows SA networks trail slightly behind

PEO and LIN networks in terms of performance, but are better than HP

and GA. This is an encouraging result considering the vastly increased

search/behaviour space the SA discovery component has to deal with

due to β, as it indicates that the variable memristor induces no significant

performance overhead. Similar results can be seen for average fitness,

Figure 4(b).

Figure 4(c) reveals that SA networks finish with the fewest number of

required neurons, significantly less than GA networks (Table 1 showns

p=0.046). However, Figure 4(d) shows that GA networks have statis-

tically sparser connectivity (p=0.019) than SA networks. Connections

were expected to be more prolific in SA networks as they are computa-

tionally more powerful than static connections, a notion echoed in recent

literature [1].

Considering possible hardware implementations, CMOS neurons are

larger and more complex than the synapses that connect them. As neu-

ron numbers are more likely to be a constraint, a reduction in neurons

despite increased connectivity can be said to be beneficial. In the case

of both Figure 4(c) and 4(d), the profile of the HP memristor was due to

one anomalous result, and as such did not infer statistical significance in

either case.

10.1.2 Self-adaptive parameters

Self-adaptive parameter results can be seen in the final 3 columns of

Table 1 (figures not shown). µ was not compared as it was only used in

GA networks (final average value 0.022). Similarly ι was only used in SA

networks (final average value 0.026). Two main results were of interest (i)

SA networks had a universally lower ω, which governed the rate of neuron

addition. This result indicated more parsimonious SA network evolution,

allowing significantly less neurons than GA networks (ii) GA networks had

lower τ than SA networks, allowing sparser connectivity (Figure 4(d)).

10.1.3 Evolution of β

As β varied between 1-101 in the case of SA HP-governed profiles and

1-100 in the case of SA PEO-PANI-goverened profiles, the total range of β

is 199, where a value between 1-101 is considered to be a HP-governed

profile and anything >101 is a PEO-PANI-goverened profile.

Analysis of the SA networks revealed that the connections to the mo-

tor on the side that made the turn evolved less linear profiles, allowing

for quicker action switching behaviour. In addition, connections between

the input and hidden layer had a lower average maximum (145.98 vs.

150.11) and higher average minimum (50.945 vs. 27.533 ) than those

between the hidden and output layer. This suggests that connections to

motors in general were evolutionarily preferred to have more nonlinear

conductance profiles. Connections in both of these areas had higher av-

erage maximum and lower average minimum β values than connections

within the hidden layer (116.16 and 84.1 respectively), suggesting that

more steady memristance profiles were preferred there.
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11 Conclusions

In this paper we have introduced the notion of a variable memristor and

analysed its synaptic performance when compared to three static mem-

ristor types and non-memristive connections in a simulated robotics en-

vironment. The main benefit of memristive STDP over other STDP imple-

mentations lies in hardware implementations, as the efficiacy and past

history of the synapse is stored in the nonvolatile physical state of the

device and thus does not require simulation.

Our hypothesis was that the additional degrees of functional freedom

afforded to the variable memristors allowed them to outperform these

other networks. Numerous findings were found to support this hypothe-

sis, including higher performance than HP networks, higher quality solu-

tions than linear memristor networks, and fewer required neurons than

GA networks. These findings suggest that self-adapation of β is har-

nessed by the evolutionary process to provide flexible plastic networks

with more implicit degrees of freedom than the other network types.

Variable plasticity was harnessed via STDP to achieve more expedient

goal-finding behaviour with reduced topological complexity when com-

pared to certain other network types. Importantly, the self-adaptation

process itself was found to be non-disruptive with respect to network

performance. Possible future research directions include hardware and

mixed-media implementations.
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Learning and Intelligent OptimizatioN Conference - LION 6
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Camera ready for post-proceedings: February 24, 2012

The LION conference aims at exploring the intersections between ma-

chine learning, artificial intelligence, mathematical programming and al-

gorithms for hard optimization problems. The main purpose of the event

is to bring together experts from all these areas to present and discuss

new ideas, new methods, general trends, challenges and opportunities in

applications as well as in research aiming at algorithmic advances. The

conference program will consist of plenary presentations, introductory

and advanced tutorials, technical presentations, and it will give ample

time for discussions.

Relevant Research Areas

LION 6 solicits contributions dealing with all aspects of learning and intel-

ligent optimization. Topics of interest include, but are not limited to:

Metaheuristics such as tabu search, iterated local search, evolution-

ary algorithms, ant colony optimization, particle swarm optimiza-

tion, and memetic algorithms

Hybridizations of metaheuristics with other techniques for optimiza-

tion

Hyperheuristics and automatic design of heuristics

Machine learning-aided search and optimization

Algorithm portfolios and off-line tuning methods

Reactive search optimization, autonomous search, adaptive and

self-adaptive algorithms

Specific adaptive metaheuristic techniques applied to propositional

satisfiability, scheduling and planning, routing and logistics prob-

lems

Interface(s) between discrete and continuous optimization

Algorithms for dynamic, stochastic and multi-objective problems

Multiscale and multilevel methods

For all the previous approaches:

Experimental analysis and modeling

Parallelization techniques

Theoretical foundations

Innovative applications

High-quality scientific contributions to these topics are solicited, in addi-

tion to advanced case studies from interesting, high-impact application

areas.
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Featuring the latest in theoretical and applied research, evo* topics in-

clude recent genetic programming challenges, evolutionary and other

meta-heuristic approaches for combinatorial optimization, evolutionary

algorithms, machine learning and data mining techniques in the bio-

sciences, in numerical optimization, in music and art domains, in image

analysis and signal processing, in hardware optimization and in a wide

range of applications to scientific, industrial, financial and other real-

world problems.
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on topics strongly related to the evolution of computer programs, ranging

from theoretical work to innovative applications.
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12th European Conference on Evolutionary Computation in Combinato-

rial Optimization Practical and theoretical contributions are invited, re-

lated to evolutionary computation techniques and other meta-heuristics
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10th European Conference on Evolutionary Computation, Machine Learn-

ing and Data Mining in Computational Biology Emphasis is on evolu-

tionary computation and other advanced techniques addressing impor-
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that have been implemented and tested in simulations and on real-life

datasets.
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evoapplications (flyer)

European Conference on the Applications of Evolutionary Computation

evocomnet

9th European event on nature-inspired techniques for telecommu-

nication networks and other parallel and distributed systems

evocomplex

3rd European event on algorithms and complex systems

evofin

6th European event on evolutionary and natural computation in

finance and economics

evogames

4th European event on bio-inspired algorithms in games

evohot

7th European event on bio-inspired heuristics for design automa-

tion

evoiasp

14th European event on evolutionary computation in image anal-

ysis and signal processing

evonum

5th European event on bio-inspired algorithms for continuous pa-

rameter optimisation

evopar

1st European event on parallel and distributed Infrastructures

evorisk

1st European event on computational intelligence for risk man-

agement, security and defence applications

evostim

7th European event on nature-inspired techniques in scheduling,

planning and timetabling

evostoc

9th European event on evolutionary algorithms in stochastic and

dynamic environments

evotranslog

6th European event on evolutionary computation in transporta-

tion and logistics
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July 2012

GECCO 2012 - Genetic and Evolutionary Computation Conference

July 7-11, 2012, Philadelphia, PA, USA

Homepage: http://www.sigevo.org/gecco-2012

Deadline January 13, 2012

Author notification: March 13, 2012

Workshop and tutorial proposals submission: November 07, 2011

Notification of workshop and tutorial acceptance: November 28, 2011

The Genetic and Evolutionary Computation Conference (GECCO-2012)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

Organizers

General Chair: Jason Moore

Editor-in-Chief: Terence Soule

Publicity Chair: Xavier Llorá

Tutorials Chair: Gabriela Ochoa

Students Chair: Josh Bongard

Workshops Chair: Bill Rand

Competitions Chairs: Daniele Loiacono

Business Committee: Wolfgang Banzhaf

Marc Schoenauer

EC in Practice Chairs: Jörn Mehnen

Thomas Bartz-Beielstein,

David Davis

Important Dates

Paper Submission Deadline January 13, 2012

Decision Notification March 13, 2012

Camera-ready Submission April 9, 2012

To Propose a Tutorial or Workshop

A detailed call for workhop and tutorial proposals will be posted later

so stay tuned! Meanwhile, for enquiries regarding tutorials contact

gecco2012tutorials@sigevolution.org while for enquiries about work-

shops contact gecco2012workshops@sigevolution.org.

More Information

Visit www.sigevo.org/gecco-2012 for information about electronic sub-

mission procedures, formatting details, student travel grants, the latest

list of tutorials and workshop, late-breaking papers, and more.

Contact

For general help and administrative matters contact GECCO support at

gecco2012@sigevolution.org

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.

SIGEVOlution Volume 5, Issue 2 24

http://www.sigevo.org/gecco-2012
mailto:gecco2012tutorials@sigevolution.org
mailto:gecco2012workshops@sigevolution.org
http://www.sigevo.org/gecco-2012
mailto:gecco2012@sigevolution.org


EDITORIAL

September 2012

PPSN 2012 – International Conference on Parallel Problem

Solving From Nature

September 1-5, 2012, Taormina, Italy

Homepage: http://www.dmi.unict.it/ppsn2012/

Call for paper: www

Email: ppsn2012@dmi.unict.it

Paper Submission Deadline: March 15, 2012

Author Notification: June 1, 2012

Workshop Proposals Submission: October 15, 2011

PPSN XII will showcase a wide range of topics in Natural Computing

including, but not restricted to: Evolutionary Computation, Quantum

Computation, Molecular Computation, Neural Computation, Artificial Life,

Swarm Intelligence, Artificial Ant Systems, Artificial Immune Systems,

Self-Organizing Systems, Emergent Behaviors, and Applications to Real-

World Problems.

Paper Presentation

Following the now well-established tradition of PPSN conferences, all ac-

cepted papers will be presented during small poster sessions of about 16

papers. Each session will contain papers from a wide variety of topics,

and will begin by a plenary quick overview of all papers in that session

by a major researcher in the field. Past experiences have shown that

such presentation format led to more interactions between participants

and to a deeper understanding of the papers. All accepted papers will be

published in the LNCS Proceedings.

Paper Submission

Researchers are invited to submit original work in the field of natural

computing as papers of not more than 10 pages. Authors are encouraged

to submit their papers in LaTeX. Papers must be submitted in Springer

Verlag’s LNCS style through the conference homepage, here.
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About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate in an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.
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