
SIGEVOlution
newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation

Volume 4
Issue 4

in this issue

Galactic Arms Race
Erin J. Hastings

Kenneth O. Stanley

A Perl Primer for
EA Practitioners

Juan-Julián Merelo

The Columns
new issues of journals

calls & calendar

EDITORIAL

Editorial

A
nd then there were four. This issue ends the fourth volume of SIGEVOlution and clears the

backlog accumulated in 2009. The newsletter is now back on schedule! It seems like a

long time since the first issue came out in May 2006. Since then, the newsletter published 33

articles, three interviews, several event reports and thesis summaries. The most downloaded

issue on its publication day is the one hosting John Holland’s interview, with more than 600 downloads.

As the cover suggests, the first article of this issue is about games, more precisely, about Galactic Arms

Race (GAR), an indie video game developed by the Evolutionary Complexity Research Group (EPlex) at

the University of Central Florida. GAR was selected as a finalist in the Indie Game Challenge and won the

Editor’s Pick for Best AI in an Independent Game in the 2009 AIGameDev.com Award. Next, Juan-Julián

Merelo briefly presents his Perl library to help researchers working with evolutionary algorithms. At the

end, the columns provide information about new issues of journals and forthcoming events.

This new issue comes to you thanks to Erin J. Hasting, Kenneth O. Stanley, Juan-Julián Merelo, Martin Butz,

Xavier Llorà, Kumara Sastry, Cristiana Bolchini, Francesco Amigoni, Mario Verdicchio, Viola Schiaffonati,

and board members Dave Davis and Martin Pelikan.

The cover is a screenshot from Galactic Arms Race.

Pier Luca

March 31st, 2010

SIGEVOlution Volume 4, Issue 4

Newsletter of the ACM Special Interest Group

on Genetic and Evolutionary Computation.

SIGEVO Officers

Darrell Whitley, Chair

John Koza, Vice Chair

Una-May O’Reilly, Secretary

Wolfgang Banzhaf, Treasurer

SIGEVOlution Board

Pier Luca Lanzi (EIC)

Lawrence "David" Davis

Martin Pelikan

Contributors to this Issue

Erin J. Hastings

Kenneth O. Stanley

Juan-Julián Merelo

Contents

Galactic Arms Race 2

Erin J. Hastings

Kenneth O. Stanley

A Perl Primer for Evolutionary 12

Algorithm Practitioners

Juan-Julián Merelo

New Issues of Journals 20

Calls and Calendar 21

About the Newsletter 29

ISSN: 1931-8499

SIGEVOlution Volume 4, Issue 4

http://www.sigevolution.org/issues/pdf/SIGEVOlution200601.pdf
http://www.sigevolution.org/issues/pdf/SIGEVOlution200803.pdf
http://gar.eecs.ucf.edu/
http://gar.eecs.ucf.edu/
http://eplex.cs.ucf.edu/
http://www.ucf.edu/
http://gar.eecs.ucf.edu/
http://www.indiegamechallenge.com/finalists/
http://aigamedev.com/open/editorial/2009-awards-results/
http://gar.eecs.ucf.edu/

Galactic Arms Race: An Experiment
in Evolving Video Game Content

Erin J. Hastings, University of Central Florida, Orlando, hastings@cs.ucf.edu
Kenneth O. Stanley, University of Central Florida, Orlando, kstanley@cs.ucf.edu

Galactic Arms Race (GAR)1 is an indie video game developed by the Evo-

lutionary Complexity Research Group (EPlex) at the University of Central

Florida to demonstrate the potential for novel artificial intelligence (AI)

technology to impact video games. In particular, the new technology

in GAR is an evolutionary algorithm called content-generating neuroevo-

lution of augmenting topologies (cgNEAT), which is designed to evolve

unique game content as the game is played. GAR is a multi-player space

shooter in which players fight with particle-system weapons. The unique

feature of GAR is that the game continually introduces new such weapons

evolved by the cgNEAT algorithm. The philosophy behind GAR is that one

of the best ways to support the argument that novel AI algorithms can

impact how games are made is to make a fun game that is not only an

academic proof-of-concept, but also a genuinely entertaining experience

for regular gamers.

Because of this philosophy, the story behind GAR and its development is

somewhat unique, although it follows in part from the earlier experience

of co-developer Kenneth Stanley on the NERO project [8]. GAR began

both as a dissertation project in AI by Erin Hastings and as a volunteer

project for undergraduate and Masters students looking for experience

in game programming. While significant effort centered on the content-

generating algorithm, game design and architecture were also important

focuses. That is, for the project to meet its goals, it had to be fun and

attract players from outside the academic world. In fact, thorough quan-

titative analysis of the idea (which is necessary for it to be published)

would require attracting a significant user-base just to test the algorithm,

which is designed to leverage input from many simultaneous players.

1 The GAR multiplayer demo is available at http://gar.eecs.ucf.edu/.

Fortunately, the effort did ultimately pay off. GAR won the Best Pa-

per Award at the 2009 IEEE Symposium on Computational Intelligence

in Games [3], Editor’s Pick for Best AI in an Independent Game in the

2009 AIGameDev.com Awards2, and was chosen as one of 12 finalists

out of over 250 entries to the 2010 Indie Game Challenge3. It appeared

in Slashdot and a number of other media sources4 and was downloaded

over 10,000 times in the weeks after its release. In the GAR online mul-

tiplayer experiment [2], over 1,000 registered players from across the

world evolved literally hundreds of thousands of weapons and destroyed

over one million virtual aliens. Thus the project was able to accumulate a

significant volume of data on the behavior of players and the outcomes of

evolutionary content generation in a real-time online multiplayer game.

In principle, cgNEAT can evolve any class of parameterized content. Thus

the generality of the approach means it may impact future commercial

game production and increase the longevity of games that might oth-

erwise become repetitive, potentially bringing a new application of evo-

lutionary computation to industry. In this way, the results in this paper

open up a promising new direction in video game design and research.

This article gives a brief overview of cgNEAT and GAR. A more detailed

description of these techniques and related works can be found in Hast-

ings, Guha, and Stanley [2].

2 http://aigamedev.com/open/editorial/2009-awards-results/
3 http://www.indiegamechallenge.com/finalists/galactic-arms-race/
4 http://gar.eecs.ucf.edu/index.php?content=media

SIGEVOlution Volume 4, Issue 4 2

http://gar.eecs.ucf.edu/

EDITORIAL

Collaborative Content Evolution (CCE)

Evolving procedural game content is an emerging research area with

great potential to contribute to the mainstream gaming industry. There

are some examples of evolved game content that predate GAR, including

race tracks [13] and even the rules of the game itself [14, 1].

Other recent work begins to bridge the gap between evolutionary art

and games. In Avera [1, 4], the system evolves interactive art pieces

for simple puzzle games. In another example [15], players interact with

complex swarm systems through an IEC interface, enabling search for

well-performing swarm configurations.

Inspired by these works, cgNEAT aims to evolve game content in real

time, based on tracked player preferences in a multiplayer setting

through a process called collaborative content evolution (CCE), as illus-

trated in figure 1.

In short, players begin the game with an initial set of content. If players

use some of the content often, it is inferred that they enjoy that content,

and the game produces new content that extends from or elaborates on

that preferred content. However, if players are unhappy with certain

content, they will not use it (or may discard it); thus the game will not

produce more content of that type. In this manner, content is continually

evolved based on the preferences of the players.

Content Generating NeuroEvolution Of Augmenting
Topologies (cgNEAT)

The goal of the cgNEAT algorithm is to automatically generate computer

graphics and video game content based on user behavior as the game

is played. While there are technologies for evolving content like pictures

[6, 12, 5], such technologies are not designed to work in real time dur-

ing a game; rather they require users to explicitly designate which items

are the best, which is something that a user playing a game does not

want to do. That is, constantly answering questions about what they like

and what should be produced in the future would disrupt players’ experi-

ence. In contrast, the cgNEAT method makes these decisions automati-

cally based on implicit information within usage statistics.

The main principles of cgNEAT follow:

1. Each content item is represented by a genome. The genome in GAR

is a special kind of neural network called a compositional pattern

producing network (CPPN) [7] that guides how particle weapons be-

have. In principle, a different representation than CPPNs can also be

evolved.

2. During the game, each content item is assigned a fitness that is

computed based on how often players actually use the content. That

way, the system knows the relative popularity of each content item

currently in the game.

3. Players begin the game with either (1) random content or (2) content

from the starter pool, which is a special pool of content appropriate

to beginners in the game. Starter pool content does not contribute

to evolution and cannot be selected for reproduction.

4. Content is spawned in the game world, which means that it is placed

in parts of the world where users can obtain it. However, unlike

in most evolutionary systems, spawned content is not eligible for

reproduction until players pick it up.

5. Content is reproduced in cgNEAT as follows: The algorithm selects

content items from among content that players in the world already

possess as parents that reproduce to form new content, which is

spawned as described in step 4. The content items that are chosen

as parents are selected probabilistically based on a roulette wheel

scheme in which the chance of being chosen as a parent is pro-

portional to the popularity (i.e. fitness) of the item. Reproduction,

including mutation and crossover, is performed based in part on the

NEAT algorithm [9, 10]. Thus, there is a chance that CPPNs may

become more complex than their parents.

6. For any new content that is spawned, there is a probability (selected

by the designer) that it will be chosen from a spawning pool, which

is a collection of pre-evolved content, instead of being reproduced

from parents. This pool ensures that diversity is not lost and that

good types of content from the past (i.e. those that users liked)

might reappear. Additionally, it ensures an initial seed of good con-

tent when the game first starts and players’ preferences are un-

known. The game designers initially select content, which may be

pre-evolved before the game is released, to include in the spawning

pool.

SIGEVOlution Volume 4, Issue 4 3

EDITORIAL

(a) Players try different content

Current content in game:

(b) Players keep what they like and
drop or stop using what they don't

Current content in game:

(c) Players keep looking for
something new or better

Game content evolves based on
player preferences:

Fig. 1: Illustrating Collaborative Content Evolution (CCE) in Games. The main idea in CCE is that content evolution in games begins with a

diverse population of randomized content (left). As players explore the world and discover new content, they likely keep content with which they

are satisfied and discard that with which they are not (center). As evolution continues, content that is widely disliked filters out of the game (right)

and content that players enjoy becomes the parents of new generations of content. In this way, players continually explore a succession of changing

content.

SIGEVOlution Volume 4, Issue 4 4

EDITORIAL

7. Content that obtains a very high fitness (i.e. is popular with players)

may optionally be saved to the content archive. There are several

ways game designers can use archive material including (1) data

analysis, (2) cycling it back into the game by adding it to the spawn-

ing pool, or (3) giving it to NPCs for use against players.

Finally, note that for cgNEAT in a multiplayer environment, although all

players’ preferences directly contribute to the course of evolution, the

content generated is not an “average” of all player preferences. Rather,

unique content is reproduced on a individual basis from individual items

that are popular. Thus several diverse trends can flourish simultaneously.

Note that the cgNEAT algorithm incorporates some mechanics of its pre-

decessor NEAT [9, 10] and standard evolutionary computation (EC), yet

exhibits several major differences. Unlike in normal EC, the population

size (i.e. those items that are eligible at any given time to reproduce)

is variable and depends entirely on the number of users in the system.

Furthermore, when an offspring is produced, unlike in normal evolution-

ary computation, it is not immediately placed into the population eligible

to reproduce. Instead, it is in a special temporary state (placed some-

where in the game world) in which it may join the population only if a

user chooses to acquire it. Also unlike normal evolutionary computation,

instead of fitness determining which items are eliminated from the popu-

lation, users entirely determine which items leave the population simply

by discarding them.

Unlike standard interactive evolutionary computation (IEC [11]), users

never explicitly communicate to the system which content they like. In-

stead, the preferred content is induced by the system implicitly from nat-

ural human behavior. That is, users do not need to know that they are

interacting with an evolutionary algorithm yet evolution still works any-

way.

Unlike regular NEAT, speciation is not necessary because users determine

what is popular and the diversity of the population reflects the diversity

of user preferences. Every step of the cgNEAT algorithm is asynchronous.

At any time players may cause content to join the population or be elimi-

nated.

Galactic Arms Race

The cgNEAT algorithm was introduced to evolve game content in real

time, based on tracked player preferences in a multiplayer setting

through CCE. This idea was first introduced in the Galactic Arms Race

(GAR [2]) video game. In GAR (figure 2), the goal is to pilot a space ship

to defeat enemies, gain experience, earn money, and most importantly,

to find advantageous new weapons that are automatically generated by

the cgNEAT algorithm [2]. GAR contains both a single player game and a

full multiplayer game, in which weapons evolve based on the aggregate

usage of all players online. In single player mode, evolution is directed by

the actions of a single player battling NPC aliens in the game. GAR mul-

tiplayer evolution is substantially more diverse because the evolutionary

population consists of the weapons currently possessed by all players in

the game (i.e. it is CCE).

Each weapon in GAR is unique and represented by a CPPN [7], which

is a type of artificial neural network (ANN). In GAR, players begin the

game with an initial set of particle system weapons, which is the class

of content evolved by the game. If players fire certain weapons often,

cgNEAT infers that they enjoy that content, and the game produces new

content that extends from or elaborates on that preferred content. In

contrast, if players are unhappy with a certain weapon, they will not use

it (or may discard it); thus the game will not produce more content of that

type. The aim of this process is to continually evolve content based on

the preferences of the players.

During the online multiplayer experiment in 2009, 1,007 unique player

accounts were created on the server in approximately two months. At

the time of the sample, over 73% of valid player accounts progressed

past level 20, indicating substantial time (i.e. at least two or three hours)

invested. A substantial proportion of players progressed to much higher

levels, which takes several days in-game. The primary method of obtain-

ing new weapons in GAR is to defeat enemies. The 1,007 players on the

server scored 9,038 player-versus-player (PVP) kills, 721,456 Alien kills,

714,274 Pirate kills, and 22,670 Space Blob kills. Such a large kill total

(over 1.46 million) hints at the intensity of game play.

SIGEVOlution Volume 4, Issue 4 5

EDITORIAL

Fig. 2: GAR Client. Players in GAR pilot their space ship (screen center) from a third-person perspective. This picture demonstrates a player destroying

enemies with an evolved weapon. Left of the player ship is a weapon pickup dropped from a destroyed enemy base. A particle system preview emits

from the weapon pickup (i.e. “neuralium isotope,” left of player) to visually indicate how the weapon will function before the player picks it up. The

GAR Client software is available online at http://gar.eecs.ucf.edu and runs on any Windows PC.

SIGEVOlution Volume 4, Issue 4 6

http://gar.eecs.ucf.edu

EDITORIAL

In total, 379,081 weapons were evolved (note that about 10% of these

are from the spawning pool) by players destroying enemies, their bases,

and other players. This number is remarkably high for an IEC system.

On average, each player encountered over 375 weapon drops. Addition-

ally, players fired over 23.6 million shots with the evolved weapons they

discovered. These results indicate that cgNEAT is capable of exposing

players to a large variety of content quickly.

When weapons are spawned in the galaxy, they are displayed before

they are picked up as a visualization called a “neuralium isotope.” Thus

players can decide whether or not to pick up a weapon based on its visu-

alization. Of the 379,081 weapons dropped, 132,722 were picked up by

players, which is roughly 35%. The reasons that players do not always

pick up weapons are either (a) the weapon is deemed inferior to those in

their arsenal, or (b) the weapon is similar to a weapon they already pos-

sess. In this context, that 35% of all weapons are picked suggests that

players indeed decide whether or not to pick up content based on the

previews. That is, players do not need to pick up every weapon they see.

At the same time, it suggests that a considerable proportion of weapons

evolved (about one third) are attractive enough to pick up, even with only

three weapon slots available.

The starter weapons in GAR (which shoot in a straight line) act as an

experimental control to compare with the weapons evolved by cgNEAT.

During the snapshot, the number of starter weapons possessed by play-

ers above level 50 was 70, which is only 4% of the total weapons held

by those players. Note that in GAR players are able to obtain starter

weapons at any time during the game by selling unwanted isotopes in

exchange for starter weapons. In fact, because such a sale also yields

several credits of game currency for the player, in effect there is an in-

centive to sell evolved weapons in exchange for starter weapons. Never-

theless, of the over 1.46 million kills of players and NPCs on the GAR of-

ficial server, only 22,935 were by starter weapons (roughly 1.5%). From

these results it can be inferred through player behavior that they pre-

ferred evolved weapons to starter weapons.

The total number of combined generations of all weapon lineages in the

snapshot is 50,646, and the highest generation weapon is 98, suggesting

that weapons continue to be used even into later generations. Addition-

ally, the average number of generations per weapon in the population

sample is 16, indicating that it does not take many generations for play-

ers to find weapons that they want to keep.

Overall, players in the GAR multiplayer experiments discovered a wide

variety of both aesthetically and tactically diverse weaponry evolved

through their implicit preferences. Additional server data that was stored

includes the weapon archive, where all weapons that were fired at least

800 times (i.e. highly fit weapons) are saved, and the PVP archive, where

all weapons that score PVP kills are stored. By the time of the snapshot,

these archives contained 5,209 and 1,662 weapons, respectively. The

weapons presented in figure 3 from those archives were evolved by play-

ers on the official server from around the world.

Discussion and Future Work

The hope for GAR is that it shows that evolutionary computation may be a

key enabling technology for automatic content generation. In the future,

cgNEAT may evolve a different kind of content in an entirely different

game. For example, vehicles, clothing, buildings, decorations, avatars,

and other types of weapons all might evolve according to the usage-

based heuristic in cgNEAT. A massive multiplayer online game (MMO)

could be an ideal setting for such a process because the persistence of

the world means evolution can continue for months or years.

The usage statistics, diversity of weapons, and recognition that GAR has

received suggest that it is possible to succeed in this type of indie project

in a low-budget academic setting. It also provides an opportunity for

undergraduates to gain valuable experience working on a video game

with a real game engine. For graduate students, the game can serve as

a platform for Ph.D.-level research. The potential for wider recognition,

which is greater in the game industry than in some other domains, also

provides significant motivation to student teams.

In a larger context, GAR suggests a general model for research projects

in AI and gaming. Instead of viewing existing games as testbeds for com-

peting algorithms, an appealing alternative is to build an entirely new

game around a technology to demonstrate its potential to deliver engag-

ing new experiences. An additional benefit is that potential players need

not purchase an existing game to participate, because the experimental

game can be distributed freely on the Internet. Evolutionary computation

can play a role in enabling the next generation of indie games, which are

an effective medium for communicating the potential of evolution to the

public as well as to fellow researchers.

SIGEVOlution Volume 4, Issue 4 7

EDITORIAL

(a) 3 gens (b) 12 gens (c) 11 gens

(d) 9 gens (e) 27 gens (f) 4 gens

Fig. 3: Evolved Weapons. This example displays archived weapons from the GAR Official 32-player server. Note that none of these weapons were

conceived by the developers; all of them were evolved by cgNEAT based on the preferences of players.

SIGEVOlution Volume 4, Issue 4 8

EDITORIAL

Acknowledgments

Special thanks to the Galactic Arms Race (GAR) development team,

testers, and everyone who has downloaded the game since its

release. The Galactic Arms Race free demo is available online

at http://gar.eecs.ucf.edu and the project’s official email address is

gar@eecs.ucf.edu.

Evolutionary Complexity Research Group at UCF

The Evolutionary Complexity Research Group at UCF (also known as

EPlex; http://eplex.cs.ucf.edu) is directed by Prof. Kenneth Stanley. Its

primary focus is on developing algorithms inspired by the ability of evo-

lution in nature to produce highly complex artifacts. These algorithms

are then applied to a variety of domains, including neuroevolution, au-

tomated control, multiagent learning, art, music, and video games. Al-

gorithms and software developed by EPlex include HyperNEAT, multia-

gent HyperNEAT, novelty search, Picbreeder, NEAT Particles, and Galactic

Arms Race. All are freely available from the EPlex website.

Bibliography

[1] S. Colton and C. Browne. Evolving simple art-based games. Applica-

tions of Evolutionary Computing, 5484, 2009.

[2] E. Hastings, R. Guha, and K. Stanley. Automatic content generation

in the galactic arms race video game. IEEE Transactions on Compu-

tational Intelligence and AI in Games, 1(4), 2009.

[3] E. J. Hastings, R. K. Guha, and K. O. Stanley. Evolving content in the

galactic arms race video game. Proceedings of the IEEE Symposium

on Computational Intelligence and Games, 2009.

[4] M.Hull and S. Colton. Towards a general framework for program gen-

eration in creative domains. Proceedings of the 4th International

Joint Workshop on Computational Creativity, 2007.

[5] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,

and K. O. Stanley. Picbreeder: Evolving pictures collaboratively on-

line. In Proceedings of the Computer Human Interaction Conference,

2008.

[6] K. Sims. Artificial evolution for computer graphics. Proceedings of

the ACM Special Interest Group on Graphics and Interactive Tech-

niques, pages 319–328, 1991.

[7] Kenneth O. Stanley. Compositional pattern producing networks: A

novel abstraction of development. Genetic Programming and Evolv-

able Machines Special Issue on Developmental Systems, 8(2):131–

162, 2007.

[8] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-

time neuroevolution in the NERO video game. IEEE Transactions on

Evolutionary Computation Special Issue on Evolutionary Computa-

tion and Games, 9(6):653–668, 2005.

[9] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks

through augmenting topologies. Evolutionary Computation, 10:99–

127, 2002.

[10] Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolu-

tion through evolutionary complexification. Journal of Artificial Intel-

ligence Research, 21:63–100, 2004.

[11] H. Takagi. Interactive evolutionary computation: Fusion of the ca-

pacities of EC optimization and human evaluation. Proceedings of

the IEEE, 89(9):1275–1296, 2001.

[12] S. Todd and W. Latham. Evolutionary Art and Computers. Academic

Press, Inc., Orlando, FL, USA, 1992.

[13] J. Togelius, R. De Nardi, and S. M. Lucas. Towards automatic person-

alised content creation for racing games. In Proceedings of the IEEE

Symposium on Computational Intelligence and Games. IEEE Press,

2007.

[14] J. Togelius and J. Schmidhuber. An experiment in automatic game

design. In Proceedings of the IEEE Symposium on Computational

Intelligence and Games. IEEE Press, 2008.

[15] S. von Mammen. Swarming for games: Immersion in complex sys-

tems. Applications of Evolutionary Computing, 5484, 2009.

SIGEVOlution Volume 4, Issue 4 9

http://gar.eecs.ucf.edu
http://eplex.cs.ucf.edu

EDITORIAL

About the authors

Kenneth O. Stanley is an assistant professor in the

School of Electrical Engineering and Computer Science

at the University of Central Florida. He received a B.S.E.

from the University of Pennsylvania in 1997 and re-

ceived a Ph.D. in 2004 from the University of Texas at

Austin. He is an inventor of the Neuroevolution of Aug-

menting Topologies (NEAT) and HyperNEAT algorithms

for evolving complex artificial neural networks. His main research

contributions are in neuroevolution (i.e. evolving neural networks),

generative and developmental systems, coevolution, machine learn-

ing for video games, and interactive evolution. He has won separate

best paper awards for his work on NEAT, NERO, NEAT Drummer, Hy-

perNEAT, novelty search, and Galactic Arms Race. He is the chair of

the IEEE Task Force on Computational Intelligence and Video Games,

associate editor for IEEE Transactions on Computational Intelligence

and AI in Games, and is chairing the AI Video Competition at AAAI in

2010.

Homepage: www.cs.ucf.edu/~kstanley

Erin J. Hastings earned a Ph.D. in Computer Science

at the University of Central Florida in 2009. He received

a B.S. in Computer Science from University of Florida in

2001 and an M.S. in Computer Science from University

of Central Florida in 2004. His research interests include

procedural game content, IEC, particle systems, spatial subdivision,

and networking. He has recently published papers in IEEE Transac-

tions on Computational Intelligence and AI in Games and IEEE Trans-

actions on Evolutionary Computation.

Homepage: www.eecs.ucf.edu/~hastings

Evolutionary Complexity Research Group at UCF: eplex.cs.ucf.edu

SIGEVOlution Volume 4, Issue 4 10

http://www.cs.ucf.edu/~kstanley
http://www.eecs.ucf.edu/~hastings
http://eplex.cs.ucf.edu

EDITORIAL

FOGA 2011 - Foundations of Genetic Algorithms
January 5-9, 2011, Schwarzenberg, Austria

http://www.sigevo.org/foga-2011

Enquiries and Submissions: foga@fhv.at

Deadline Monday July 5, 2010

We invite submissions of extended abstracts for the eleventh Foundations

of Genetic Algorithms workshop. FOGA is only held every two years and

focuses on theoretical foundations of all flavors of evolutionary computa-

tion. It will next be held in the Gasthof Hirschen hotel in Schwarzenberg

in Austria from Wednesday, January 5 to Sunday January 9, 2011. Prof.

Dr. Karl Sigmund has agreed to deliver a keynote lecture. Attendance is

limited to people who submitted papers, or those requesting attendance

in advance. Students are particularly encouraged to participate.

Submissions should address theoretical issues in evolutionary computa-

tion. Papers that consider foundational issues, place analysis in the wider

context of theoretical computer science, or focus on bridging the gap be-

tween theory and practice are especially welcome. This does not prevent

the acceptance of papers that use an experimental approach, but such

work should be directed toward validation of suitable hypotheses con-

cerning foundational matters.

Extended abstracts should be between 10-12 pages long. To submit,

please email a compressed postscript or a PDF file to foga@fhv.at no later

than Monday, July 5, 2011. In your email, also include the title of the pa-

per, and the name, address and affiliation of all the authors. To ensure

the reviews are double-blind authors are asked to remove references to

themselves from their paper.

Important Dates

Extended abstracts due July 5, 2010

Notification to authors September 13, 2010

Registration and room booking deadline October 8, 2010

Pre-proceedings camera ready manuscript due December 6, 2010

FOGA workshop January 5–9, 2011

Post workshop proceedings February 21, 2011

Organizers

Prof. Dr. habil. Hans-Georg Beyer www2.staff.fh-vorarlberg.ac.at/ hgb/

Dr. W. B. Langdon www.dcs.kcl.ac.uk/staff/W.Langdon/

Foundation of Genetic Algorithms 11
Wednesday, January, 5 – Sunday, January, 9

Schwarzenberg, Austria

Double blind Submissions

by 5 July 2010

to foga@fhv.at
Hans-Georg Beyer or W. B. Langdon

http://www.sigevo.org/foga-2011

SIGEVOlution Volume 4, Issue 4 11

http://www.sigevo.org/foga-2011
mailto:foga@fhv.at
mailto:foga@fhv.at
http://www2.staff.fh-vorarlberg.ac.at/~hgb/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/

A Perl Primer for Evolutionary
Algorithm Practitioners

Juan-Julián Merelo, Dept. Arquitectura y Tecnologìa de Computadores, University of Granada, Spain, jj@merelo.net

It is curious that the Perl language is not widely used within the Evolu-

tionary Algorithms community, since the main virtues of a Perl program-

mer can also be applied to the general EA practitioner. These virtues

are Impatience, Laziness and Hubris [3], and it is evident that we try

to evolve something from the initial, random, chaos, appearing then as

godlike creatures to our humble chromosomes with high fitness, thus be-

ing prone to the most important of the triad, Hubris. And who’s not to say

that evolutionary algorithms are for lazy slobs? Instead of devising an an-

alytical solution to a problem, or greedily building it piece by painstaking

and carefully designed piece, we just cobble together a fitness function

and let the evolutionary algorithm have a go at the problem. If anything,

we might fiddle a bit with operator rates, but not much more; we do not

even care about understanding the problem (we leave that for memetic

algorithm practitioners). Just the fitness, ma’am, no need to do any hard

work.

And nobody can deny we are impatient, trying to make faster what is

already fast, and throwing 256-node clusters at teeny problems to find

the solution in no time flat. Instead of letting stuff evolve at the leisurely

million-year pace of real evolution, we throw iron to it to make it fast, and

faster, and instead of doing a sure-fire exhaustive search, which is bound

to find the solution (sooner or later, in this present universe or the next

one), alas, we try to find it without even looking into the last nook and

cranny of search space.

So, having so much in common, I think it would be interesting to do evo-

lutionary algorithms in Perl. And since you (and I) are impatient persons,

let’s jump straight to it, and not waste our time in disquisitions.

Chromosomes and Populations

Let’s start by doing something simple: mutate a chromosome. We are

bound to do it sooner or later, so the sooner the better. The program

shown in Table 1 would do it.

#!/usr/bin/perl

my $chromosome = shift || "11111111";

my $mutation_point = rand(length($chromosome));

substr($chromosome, $mutation_point, 1,

(substr($chromosome, $mutation_point, 1) eq 1)?0:1

);

print $chromosome, "\n";

Tab. 1: Single chromosome mutation.

In fact, it would do a bit more than that: it would take a string issued as

a command line parameter (with a default value of 11111111), generate

a random point within it, and flip its value. The first line is probably the

weirder, since there is no mention of the command line anywhere. This is

due to Perl’s impatience: we want to do stuff as fast as possible, so that

line actually means what we see in Table 2, which, in turn, is also a short

version of the code shown in Table 3.

SIGEVOlution Volume 4, Issue 4 12

http://www.perl.org

EDITORIAL

my $chromosome = shift @ARGV || "11111111";

Tab. 2: Equivalence of $foo = shift.

my $chromosome;

if ($ARGV[0]) {

$chromosome = shift @ARGV;

} else {

$chromosome = "11111111";

}

Tab. 3: Longest form of command-line processing.

What does it all mean? Declare a variable called $chromosome, which

can hold anything as long as it is an scalar variable (number, boolean,

string), check if there is anything on the command line (contained on

the array ARGV, which is included in every program, and need not be

declared; arrays, unlike scalars, use @ instead of $); if there is anything

there, pluck the first element from the array and put it into the variable;

if there is not, just declare the default value. In fact, the first version says

the same, || reads “or” and acts as an alternative operator: if the right

hand side does is null (it has not been able to extract anything form the

command line parameters) then use the left hand side.

The rest is quite similar to other languages like C or Java except for the

funky variable syntax. In fact, we need not declare them, only it’s con-

venient. All mys could happily have been suppresed, and the program

would still work.

We still need to run the program. Perl is an interpreted language, so

running implies saving the program and either making the file runnable

(via chmod in Linux) or running it this way:

prompt$ perl mutate.pl 111000111000

111000101000

You can do it again and again, until you find the solution. But since you

are an EA practitioner (and now a Perl programmer too) you are too im-

patient, and also lazy, so it’s better to create another program that does

this for you, like the one shown in Table 4.

However, this is roughly an evolutionary algorithm from the fifties, where

mutation is the only way to explore space and, thus, does not have a very

good result. It does, however, show a few of the unique Perl features. Let

us look, for instance, at the subroutine named fitness, by the end of the

program. It is a simple conversion from binary to decimal, by appending

“0b” at the beginning of a string, and forcing evaluation (via eval) to

a number. Strings and numbers are interpreted contextually in Perl; an

alphanumeric string will behave like one or the other depending on what

we do with them; in this case we want it to be a number, that is why

we evaluate. However, eval, as it happens in many other interpreted

languages, is a function that allows you to build, on the fly, Perl structures

and interpret them (is anyone hearing Genetic Programming here?).

The next-to-last subroutine is a subroutinization of the mutation function

we saw before; it behaves pretty much as a whole program, receving its

arguments by shifting the argument array, which in this case is @_-

, which of course is not shown. We might find another interesting feature

in the previous subroutine, the expression 1..$length, which is nothing

less than a list created from the two extremes. And once again, the loop

variable is implicit, where the heck is it? Actually, nowhere, since we are

not using it, but if we needed its value, we could access it using $_, the

quintessential default variable in Perl. Whenever you are looking for a

loop variable and it’s not there, just try $_.

That is enough with the subroutines, let us look at the main program. Af-

ter the usual declaration of variables (which is rather a scope declaration,

since we do not need to declare them), comes one of the nice list han-

dling functions of Perl: map, which does exactly that: map from one array

to another, applying a function to every single element of the array re-

ferred to by the default variable $_. In that single statement, we create a

list with all numbers from 1 to the number of elements on the population,

and generate a random chromosome for eacn one. The actual number is

not used in this case, but it is a couple of lines down the program: once

the population is created, we evaluate it and put it in a hash (an array

keyed by strings, instead of natural numbers).

This is incredibly useful: we will only need to evaluate a chromosome a

single time, keeping the value for later use; this hash is keyed by chromo-

some, so it’s stored a single time. In fact, this nice feature could be used

much better, by changing the fitness subroutine to the one shown in

Table 5, which guarantees that every member of the population is evalu-

ated only once at the cost of using more memory, so be careful with this

in limited memory environments.

SIGEVOlution Volume 4, Issue 4 13

EDITORIAL

my $chromosome_length = shift || 16;

my $population_size = shift || 32;

my $generations = shift || 10;

my @population = map(random_chromosome($chromosome_length),

1..$population_size);

my %evaluated_population;

map($evaluated_population{$_} = fitness($_), @population);

for (1..$generations) {

my @sorted_population = sort { $evaluated_population{$b}

<=> $evaluated_population{$a} } @population;

pop @sorted_population;

@population = @sorted_population;

push @population, random_chromosome($chromosome_length);

$evaluated_population{ $population[$#population] } =

fitness($population[$#population]);

print "Best $population[0], ", $evaluated_population{$population[0]}, "\n";
}

sub random_chromosome {

my $length = shift;

my $string = ”;

for (1..$length) {

$string .= (rand >0.5)?1:0;

}

$string;

}

sub mutate {

my $chromosome = shift;

my $mutation_point = rand(length($chromosome));

substr($chromosome, $mutation_point, 1,

(substr($chromosome, $mutation_point, 1) eq 1)?0:1);

return $chromosome;

}

sub fitness {

my $chromosome = shift;

return eval "0b$chromosome";

}

Tab. 4: Naïve mutation based proto-genetic algorithm.

SIGEVOlution Volume 4, Issue 4 14

EDITORIAL

sub fitness {

my $chromosome = shift;

if ($evaluated_population{$chromosome}) {

return $evaluated_population{$chromosome};

} else {

$evaluated_population{$chromosome} = "0b$chromosome";

}

return $evaluated_population{$chromosome};

}

Tab. 5: Alternative fitness function that uses a cache.

Whatever its form, the main algorithm loop sorts the population (using

the fitness stored in the hash), then eliminates the last member of the

population by popping it, and generates a random one, pushing it into

the population. The weirdest part of this is probably how sorting is done;

first thing to take into account is that both sides of the assignment are

arrays; sort takes an expression and compares members of the array to

be sorted by using it; the two members to be compared become $a and

$b within that expression, and the operator <=>, which returns -1, 0 or 1

depending on the relative values.

You can even run the program using other values:

prompt$ perl population-mutate.pl 16 64 1000

Best 1111111001110011, 65139

Best 1111111001110011, 65139

but unless you give it some time, you’ll arrive nowhere fast. So it’s time

for the heavy artillery: using crossover, and a better way of selecting

individuals.

Going All The Way: Using Selection and Crossover

A full genetic algorithm, in fact, takes 100 lines in Perl; only what is new is

shown in Table 6. This program, which can be downloaded (along the rest

of the programs) from http://sl.ugr.es/perl-primer, includes a

few dirty tricks from the Perl bag. The fitness function has been changed

to compute the number of ones (instead of the binary value) thus:

my $copy = $chromosome;

$fitness_of{$chromosome} = ($copy =~ tr/1/0/);

tr is an operator that substitutes, and returns the number of substitu-

tion. Here we do so; substitute the ones for 0, which is quite fast, and use

the side effect as a result. Crossover is no big deal: uses substr, same

as mutation, but two subroutines have been included for the stochas-

tic universal sampling: compute_wheel and spin. The only new thing

about these subroutines is that arrays are passed by reference (\@array

is a reference to an array) and then de-referenced inside the subroutine

($@array).

Other than this sampling and crossovering, the program looks remark-

ably similar to the old one: sort population, extract the best from it,

once again using array assignment: @sorted_population[0,1] are

the first (index 0) and second element of the array, returned as an array

too. We use also automatic conversion of arrays to scalars: an array like

@slots becomes its number of elements in an scalar context such as

$p = $index++ % @slots;

In this case, this evolutionary algorithm behaves as it should: finds the

solution quite fast, in just a few generations. And in 100 lines.

But in Perl, there is always another way to do it.

Using Algorithm::Evolutionary

Probably the single best thing about Perl is the existence of CPAN, the

Comprehensive Perl Archive Network, which at http://cpan.org contains

thousands of modules devoted to anything imaginable, and in fact sev-

eral dozens of things nobody would be able to imagine (just look at

the Acme modules). Needless to say, a search of genetic or evolu-

tionary returns a few modules, but I will of course talk about my own,

Algorithm::Evolutionary [2], which is not better than all the rest,

but is probably bigger than any (and older, if that can be called a feature).

I have been using Algorithm::Evolutionary for all my evolutionary

algorithm needs, the basic idea being that it should be easy for me to set

up an experiment, repeat it over and over, and process results; the mod-

ules themselves are surrounded by a set of tools which are very useful in

that sense. And this, in turn, has allowed me to publish every program

used in my papers, along with the parameter files used to run them; you

can reproduce any result I have obtained, and improve on it if you want.

SIGEVOlution Volume 4, Issue 4 15

http://sl.ugr.es/perl-primer
http://cpan.org

EDITORIAL

In any case, using this standard (available from CPAN) library along with

the files used to run everything makes all our experiments reproducible.

In fact, files are available on the CVS server as I run them, although the

CPAN releases are made usually after the paper is submitted (for lack of

time, mainly).

That’s enough for a spiel, let us see how this library improves what we

have seen above. Is it easy to run a canonical genetic algorithm, for

instance? See Table 7, which is part of the program included in the distri-

bution, and is also available from http://sl.ugr.es/cga_pl.

The basic idea of this module is to provide a series of classes that can be

instantiated to the most common objects in an evolutionary algorithm.

The Creator module, for instance, is a type of class known as Factory

[1] which takes as arguments the type of individuals we want to generate

(BitStrings), parameters they need, and population size, and, when

applied, fills the population with objects of that class.

The program then proceeds to create the rest of the operators needed for

the canonical GA: a Bitflip mutation, the usual 2-point Crossover;

Royal_Road is used as fitness function, but in principle you can use

anyone you want, programmed in Perl or (as a external program) in any

other language. Then the CanonicalGA object is instantiated with ev-

erything we have created before: a fitness function, a selection rate, and

a reference to an array (the square brackets) containing mutation and

crossover.

Evolution is then a matter of applying this single-generation canonical GA

repeatedly until a final number of generations is reached, or the solution

is found (the fitness of the best is equal to the number of bits).

If you want to test this with your own fitness function, the only thing you

have to change is exactly that; if you want to try with different param-

eters for mutation or crossover, those are changed from the command

line. Finally, if you want to do your own operator, it is not so difficult

either. It should not be, since, as a Perl programer/AE practitioner, you

are... well, you know that already.

Do you want performance?
Here’s performance for you

It is quite usual to think that interpreted languages in general, and Perl in

particular, are not suitable for algorithms whose implementations require

high performance, such as evolutionary algorithms. Either in the purely

evolutionary (which is essentially string processing, that is, integer pro-

cessing) or the fitness computation area, compiled languages (C++ or

Java) should theoretically be able to deliver more evaluations per second

than anything written in Python, Javascript or Ruby. In fact, some gen-

eral purpose benchmarks mention two orders of magnitude of difference

between these types of languages.

It is impossible to discuss those claims, but AE practitioners are already

used to know that There Is No Free Lunch. First, speed comes at the

expense of less runtime flexibility, and more time to create a program.

Laziness implies speed when sitting down to write a program and being

able to obtain fast results for the paper you were supposed to submit

yesterday. And second, some of these languages are optimized for cer-

tain tasks; Perl is quite fast when processing strings, and if you do a bit

of experimenting and process them in the Perl way, you might be able to

obtain better performance than if done in Java or machine code. And it is

way faster than Matlab.

In fact, how fast is fast? Fast enough is good enough for me. While

for certain fitness functions (for most, in fact) Perl will be slower than

compiled C++, I value the huge amount of knowledge already in CPAN,

which I can tap easily to build very complex fitness function, or, once

again, which I can use to process experiment results, represent them

graphically, or even interface with many other things: the R statistics

package, a database, the web or anything else.

Let me finish this with a request: while nobody will tell you that you need

to learn Perl to practice evolutionary algorithms, give Perl a try and you

will discover that many things that you considered hard to do will be-

come much easier. And your performance solving problems and writing

papers about them will no doubt increase, which, as an impatient person,

is probably what you are looking for.

SIGEVOlution Volume 4, Issue 4 16

http://sl.ugr.es/cga_pl

EDITORIAL

Bibliography

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design

Patterns: Elements of Reusable Object-Oriented Software. Profes-

sional Computing. Addison-Wesley.

[2] Merelo-Guervós, J.-J., Castillo, P.-A., and Alba, E. (2009).

Algorithm::Evolutionary, a flexible Perl module for evolution-

ary computation. Soft Computing. To be published, accesible at

http://sl.ugr.es/000K.

[3] Wiki (2009). Laziness impatience hubris. C2 wiki

http://c2.com/cgi/wiki?LazinessImpatienceHubris.

About the author

Juan-Julián Merelo has been using Perl about as long

as he’s been into evolutionary computation, so it is only

natural they would come together sooner or later. He is

also full professor at the University of Granada, which

makes him worry about the receding hairline that goes

with it.

Homepage: http://geneura.ugr.es/˜jmerelo/

Email: jj@merelo.net

SIGEVOlution Volume 4, Issue 4 17

http://sl.ugr.es/000K
http://c2.com/cgi/wiki?LazinessImpatienceHubris
http://geneura.ugr.es/~jmerelo/
mailto:jj@merelo.net

EDITORIAL

my %fitness_of;

map($fitness_of{$_} = fitness($_), @population);

for (1..$generations) {

my @sorted_population = sort { $fitness_of{$b}

<=> $fitness_of{$a} } @population;

my @best = @sorted_population[0,1];

print $best[0], " ", $fitness_of{$best[0]}, "\n";
my @wheel = compute_wheel(\@sorted_population);

my @slots = spin(\@wheel, $population_size);

my @pool;

my $index = 0;

do {

my $p = $index++ % @slots;

my $copies = $slots[$p];

for (1..$copies) {

push @pool, $sorted_population[$p];

}

} while (@pool <= $population_size);

@population = ();

map(mutate($_), @pool);

for (my $i = 0; $i < $population_size/2 -1 ; $i++) {

my $first = $pool[rand($#pool)];

my $second = $pool[rand($#pool)];

push @population, crossover($first, $second);

}

map(fitness($_), @population);

push @population, @best;

}

sub compute_wheel {

my $population = shift;

my $total_fitness;

map($total_fitness += $fitness_of{$_}, @$population);

my @wheel =

map($fitness_of{$_}/$total_fitness, @$population);

return @wheel;

}

sub spin {

my ($wheel, $slots) = @_;

my @slots = map($_*$slots, @$wheel);

return @slots;

}

sub crossover {

my ($chromosome_1, $chromosome_2) = @_;

my $length = length($chromosome_1);

my $xover_point_1 = int rand($length -1);

my $xover_point_2 = int rand($length -1);

if ($xover_point_2 < $xover_point_1) {

my $swap = $xover_point_1;

$xover_point_1 = $xover_point_2;

$xover_point_2 = $swap;

}

$xover_point_2 = $xover_point_1 + 1

if ($xover_point_2 == $xover_point_1);

my $swap_chrom = $chromosome_1;

substr($chromosome_1, $xover_point_1,

$xover_point_2 - $xover_point_1 + 1,

substr($chromosome_2, $xover_point_1,

$xover_point_2 - $xover_point_1 + 1));

substr($chromosome_2, $xover_point_1,

$xover_point_2 - $xover_point_1 + 1,

substr($swap_chrom, $xover_point_1,

$xover_point_2 - $xover_point_1 + 1));

return ($chromosome_1, $chromosome_2);

}

Tab. 6: Genetic algorithm with fitness-proportional selection and 2-elitism. Common parts with the previous program have been suppressed for clarity.

SIGEVOlution Volume 4, Issue 4 18

EDITORIAL

my @pop;

my $creator = new Algorithm::Evolutionary::Op::Creator($pop_size,

’BitString’, { length => $bits });

$creator->apply(\@pop); #Generates population

my $m = Algorithm::Evolutionary::Op::Bitflip->new(1);

my $c = Algorithm::Evolutionary::Op::Crossover->new(2, 4);

my $rr = new Algorithm::Evolutionary::Fitness::Royal_Road($block_size);

map($_->evaluate($rr), @pop);

my $generation = Algorithm::Evolutionary::Op::CanonicalGA->new($rr ,

$selection_rate , [$m, $c]) ;

my $contador=0;

do {

$generation->apply(\@pop);

print "$contador : ", $pop[0]->asString(), "\n" ;

$contador++;

} while(($contador < $numGens)

&& ($pop[0]->Fitness() < $bits));

print "Best is:\n\t ",$pop[0]->asString()," Fitness: ",$pop[0]->Fitness(),"\n";

Tab. 7: Main part of a canonical genetic algorithm included with the Algorithm::Evolutionary Perl module.

SIGEVOlution Volume 4, Issue 4 19

New Issues of Journals

Evolutionary Computation 18(1) (www)

Analysis of an Asymmetric Mutation Operator, Thomas Jansen,

Dirk Sudholt, pp 1–26 (pdf)

Memetic Algorithms for Continuous Optimisation Based on

Local Search Chains, Daniel Molina, Manuel Lozano, Carlos García-

Martínez, Francisco Herrera, pp 27–63 (pdf)

Computing Gap Free Pareto Front Approximations with

Stochastic Search Algorithms, Oliver Schütze, Marco Laumanns,

Emilia Tantar, Carlos A. Coello Coello, El-Ghazali Talbi, pp 65—96

(pdf)

Adaptive Niche Radii and Niche Shapes Approaches for Nich-

ing with the CMA-ES, Ofer M. Shir, Michael Emmerich, Thomas

Bäck, pp 97—126 (pdf)

Strength Pareto Particle Swarm Optimization and Hybrid EA-

PSO for Multi-Objective Optimization, Ahmed Elhossini, Shawki

Areibi, Robert Dony, pp 127—156 (pdf)

Evolutionary Intelligence 3(1) (www)

LSGA: combining level-sets and genetic algorithms for seg-

mentation, Payel Ghosh, Melanie Mitchell and Judith Gold, pp 1–11

(pdf)

Collective neuro-evolution for evolving specialized sensor

resolutions in a multi-rover task, G. S. Nitschke, M. C. Schut

and A. E. Eiben, pp 13–29 (pdf)

A learning classifier system with mutual-information-based

fitness, Robert Elliott Smith, Max Kun Jiang, Jaume Bacardit, Michael

Stout, Natalio Krasnogor and Jonathan D. Hirst, pp 31–50 (pdf)

SIGEVOlution Volume 4, Issue 4 20

http://www.mitpressjournals.org/loi/evco
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2010.18.1.18101
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2010.18.1.18102
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2010.18.1.18103
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2010.18.1.18104
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2010.18.1.18101
http://www.springer.com/engineering/journal/12065
http://www.springerlink.com/content/766735312v380m3k/fulltext.pdf
http://www.springerlink.com/content/05701487x28v7k4n/fulltext.pdf
http://www.springerlink.com/content/6ku352557t1tn667/fulltext.pdf

Calls and Calendar

March 2010

4th Workshop on Theory of Randomized Search Heuristics

(ThRaSH’2010)

March 24-25, 2010, Paris, France

Homepage: http://trsh2010.gforge.inria.fr/

Registration deadline: March 5, 2010

Following the workshops in Wroclaw, Poland, Dortmund, Germany, and

Birmingham, UK, the 4th workshop on Theory of Randomized Search

Heuristics (ThRaSH’2010) will take place in Paris on the 24th and 25th

of March 2010. The purpose of the workshop is to address questions re-

lated to theory of randomized search heuristics such as evolutionary al-

gorithms, ant colony optimization, or simulated annealing for both combi-

natorial and numerical optimization. The primary focus lies on discussing

recent ideas and detecting challenging topics for future work, rather than

on the presentation of final results.

Researchers working on theoretical aspects of randomized search heuris-

tics are invited to submit a short abstract (one single page) by email to

"thrash2010@lri.fr". No registration fee will be charged but participants

are asked to register before the workshop.

April 2010

Evostar 2010 - EuroGP, EvoCOP, EvoBIO and EvoWorkshops

April 7-9, 2010, Istanbul Technical University, Istanbul, Turkey

Homepage: www.evostar.org

The EuroGP, EvoCOP, EvoBIO and EvoApplications conferences compose

EVO*: Europe’s premier co-located events in the field of Evolutionary

Computing.

Featuring the latest in theoretical and applied research, EVO* topics in-

clude recent genetic programming challenges, evolutionary and other

meta-heuristic approaches for combinatorial optimisation, evolutionary

algorithms, machine learning and data mining techniques in the bio-

sciences, in numerical optimisation, in music and art domains, in image

analysis and signal processing, in hardware optimisation and in a wide

range of applications to scientific, industrial, financial and other real-

world problems.

EVO* Poster

You can download the EVO* poster advertisement in PDF format here

(Image: Pelegrina Galathea, by Stayko Chalakov (2009))

EVO* Call for Papers

You can download the EVO* CfP in PDF format here.

EuroGP

13th European Conference on Genetic Programming

EvoCOP

10th European Conference on Evolutionary Computation in Combinato-

rial Optimisation

EvoBIO

8th European Conference on Evolutionary Computation, Machine Learn-

ing and Data Mining in Bioinformatics

SIGEVOlution Volume 4, Issue 4 21

http://trsh2010.gforge.inria.fr/
http://www.evostar.org
http://dces.essex.ac.uk/research/evostar/poster_portrait_AEv9.pdf
http://dces.essex.ac.uk/research/evostar/Evo2010cfpTwo.pdf

FRESHLY PRINTED

EvoApplications 2010

European Conference on the Applications of Evolutionary Computation

EvoCOMNET: 7th European Event on the Application of Nature-

inspired Techniques for Telecommunication Networks and other Par-

allel and Distributed Systems

EvoCOMPLEX (new): Evolutionary Algorithms and Complex Systems

EvoENVIRONMENT: Nature Inspired Methods for Environmental Is-

sues

EvoFIN: 4th European Event on Evolutionary and Natural Computa-

tion in Finance and Economics

EvoGAMES: 2nd European event on Bio-inspired Algorithms in

Games

EvoIASP: EC in Image Analysis and Signal Processing

EvoINTELLIGENCE: Nature Inspired Methods for Intelligent Systems

EvoMUSART: 8th European event on Evolutionary and Biologically

Inspired Music, Sound, Art and Design

EvoNUM: 3rd European event on Bio-inspired algorithms for contin-

uous parameter optimisation

EvoSTOC: 7th European event on Evolutionary Algorithms in

Stochastic and Dynamic Environments

EvoTRANSLOG: 4th European Event on Evolutionary Computation in

Transportation and Logistics

EvoPHD

5th European Graduate Student Workshop on Evolutionary Computation

Evo* Coordinator: Jennifer Willies, Napier University, United Kingdom

j.willies@napier.ac.uk

Local Chair: Şima Uyar, Istanbul Technical University, Turkey

etaner@itu.edu.tr

Publicity Chair: Stephen Dignum, University of Essex, United Kingdom

sandig@essex.ac.uk

July 2010

GECCO 2010 - Genetic and Evolutionary Computation Conference

July 7-10, 2010, Portland, Oregon, USA

Homepage: http://www.sigevo.org/gecco-2010

Workshop Deadline March 25, 2010

Late Breaking Papers Deadline April 13, 2010

Author notification: March 10, 2010

Camera-ready: April 5, 2010

The Genetic and Evolutionary Computation Conference (GECCO-2010)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

SIGEVOlution Volume 4, Issue 4 22

mailto:j.willies@napier.ac.uk
mailto:etaner@itu.edu.tr
mailto:sandig@essex.ac.uk
http://www.sigevo.org/gecco-2010

FRESHLY PRINTED

Organizers

General Chair: Martin Pelikan

Editor-in-Chief: Jürgen Branke

Local Chair: Kumara Sastry

Publicity Chair: Pier Luca Lanzi

Tutorials Chair: Una-May O’Reilly

Workshops Chair: Jaume Bacardit

Competitions Chairs: Christian Gagné

Late Breaking Papers Chair: Daniel Tauritz

Graduate Student Workshop Riccardo Poli

Business Committee: Erik Goodman

Una-May O’Reilly

EC in Practice Chairs: Jörn Mehnen

Thomas Bartz-Beielstein,

David Davis

Important Dates

Paper Submission Deadline January 13, 2010

Decision Notification March 10, 2010

Camera-ready Submission April 5, 2010

Venue

The Portland Marriott Downtown Waterfront Hotel, located in downtown

Portland, is near the Portland Riverplace Marina, restaurants, shopping

& performing arts venues. Hotel room conference rate $179 includes

complimentary in-room high-speed Internet access.

More Information

Visit www.sigevo.org/gecco-2010 for information about electronic sub-

mission procedures, formatting details, student travel grants, the latest

list of tutorials and workshop, late-breaking papers, and more.

For technical matters, contact Conference Chair Martin Pelikan at pe-

likan@cs.umsl.edu.

For conference administration matters contact Primary Support Staff at

gecco-admin@tigerscience.com.

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.

2010 IEEE World Congress on Computational Intelligence

July 18-23, 2010, Barcelona, Spain

Homepage: WWW

The 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI

2010) is the largest technical event in the field of computational intelli-

gence. It will host three conferences: the 2010 International Joint Confer-

ence on Neural Networks (IJCNN 2010), the 2010 IEEE International Con-

ference on Fuzzy Systems (FUZZ-IEEE 2010), and the 2010 IEEE Congress

on Evolutionary Computation (IEEE CEC 2010). IEEE WCCI 2010 will be

held in Barcelona, a Mediterranean city located in a privileged position

on the northeastern coast of Spain. Barcelona combines history, art, ar-

chitecture, and charm within a pleasant, and efficient urban environment

where meet old friends, and make new ones. The congress will provide a

stimulating forum for scientists, engineers, educators, and students from

all over the world to discuss and present their research findings on com-

putational intelligence.

Important Due Dates

Submission deadline: January 31, 2010

Notification of paper acceptance: March 15, 2010

Camera ready submission: May 2, 2010

IEEE WCCI 2010 Conference: July 18-23, 2010

For more information visit http://www.wcci2010.org/call-for-papers

SIGEVOlution Volume 4, Issue 4 23

http://www.sigevo.org/gecco-2010
mailto:rothlauf@uni-mainz.de
mailto:rothlauf@uni-mainz.de
mailto:gecco-admin@tigerscience.com
http://www.wcci2010.org/
http://www.wcci2010.org/call-for-papers

FRESHLY PRINTED

August 2010

IEEE Conference on Computational Intelligence and Games

(CIG-2010)

August 18-21, 2010, Copenhagen, Denmark

Homepage: http://game.itu.dk/cig2010

Submission deadline: March 15, 2010

Decision notification: May 15, 2010

Camera-ready submission: June 15, 2010

Conference: August 18-21, 2010

Aim and Scope

Games have proven to be an ideal domain for the study of computa-

tional intelligence as not only are they fun to play and interesting to

observe, but they provide competitive and dynamic environments that

model many real-world problems. Additionally, methods from compu-

tational intelligence promise to have a big impact on game technology

and development, assisting designers and developers and enabling new

types of computer games. The 2010 IEEE Conference on Computational

Intelligence and Games brings together leading researchers and practi-

tioners from academia and industry to discuss recent advances and ex-

plore future directions in this quickly moving field.

Topics of interest include, but are not limited to:

Learning in games

Coevolution in games

Neural-based approaches for games

Fuzzy-based approaches for games

Player/Opponent modeling in games

CI/AI-based game design

Multi-agent and multi-strategy learning

Applications of game theory

CI for Player Affective Modeling

Intelligent Interactive Narrative

Imperfect information and non-deterministic games

Player satisfaction and experience in games

Theoretical or empirical analysis of CI techniques for games

Comparative studies and game-based benchmarking

Computational and artificial intelligence in:

• Video games

• Board and card games

• Economic or mathematical games

• Serious games

• Augmented and mixed-reality games

• Games for mobile platforms

The conference will consist of a single track of oral presentations, tutorial

and workshop/special sessions, and live competitions. The proceedings

will be placed in IEEE Xplore, and made freely available on the conference

website after the conference.

Conference Committee

General Chairs: Georgios N. Yannakakis and Julian Togelius

Program Chair: Michael Mateas, Risto Miikkulainen, and Michael Young

Proceedings Chair: Pier Luca Lanzi

Competition Chair: Simon Lucas

Local Chairs: Anders Drachen, Paolo Burelli, & Tobias Mahlmann

Important Dates

Tutorial proposals: 31st January 2010

Paper submission: 15th March 2010

Decision Notification: 15th May 2010

Camera-ready: 15th Jun 2010

Conference: 18-21 August 2010

For more information please visit: http://game.itu.dk/cig2010/

SIGEVOlution Volume 4, Issue 4 24

http://game.itu.dk/cig2010
http://game.itu.dk/cig2010/

FRESHLY PRINTED

September 2010

SSBSE 2010 - 2nd International Symposium

on Search Based Software Engineering

September 7-9, 2010, Benevento, Italy

Homepage: www.ssbse.org

Deadline: April 23, 2010

Decision notification: 21 June 2010

We are pleased to announce SSBSE 2010, the second edition of the an-

nual symposium dedicated to Search Based Software Engineering (SBSE).

The symposium’s objective is to build on the recent flourishing of interest

in SBSE by not only creating a welcoming forum for discussion and dis-

semination, but also by establishing a regular event that will strengthen

the rapidly growing international community.

Call for Papers

We invite the submission of high quality papers describing original and

significant work in all aspects of Search Based Software Engineering, in-

cluding theoretical work, research on SBSE applications, empirical stud-

ies, and reports from industrial experience. Applications may be drawn

from throughout the software engineering lifecycle. Search methods may

include, but are not limited to, operational research techniques and opti-

mization methods inspired by nature, such as evolutionary algorithms

and simulated annealing. We particularly encourage papers that use

novel search techniques and describe software engineering applications

to which SBSE has not previously been applied.

We also invite papers for a special PhD student track that will provide a

venue for students to present their work and receive feedback from se-

nior members of the SBSE research community. PhD papers may include

thesis plans, proposed research, as well as partial or complete SBSE re-

search results already obtained.

Fast abstracts may also be submitted that feature novel ideas, not yet

fully developed or validated. Accepted fast abstracts will be presented at

the symposium and published online on the conference website.

The authors of selected symposium papers will be invited to submit ex-

tended versions for a special issue of Information and Software Technol-

ogy journal (IST) edited by Elsevier.

Keynote Speakers

Prof. Riccardo Poli - University of Essex, UK

Dr. Paolo Tonella - FBK-Irst, Trento, Italy

Organizing Committee

General Chairs: Massimiliano Di Penta, Simon Poulding

Program Chairs: Lionel C. Briand, John Clark

PhD Forum Chair: Phil McMinn

Fast Abstracts Chair: Gerardo Canfora

Submissions Chair: Andrea Arcuri

Web & Publicity Chair: Jan Staunton

Important Dates

Technical papers/PhD forum submission: 23 April 2010

Notification: 21 June 2010

Fast abstract submission: 16 July 2010

Notification: 23 July 2010

SIGEVOlution Volume 4, Issue 4 25

http://www.ssbse.org

FRESHLY PRINTED

PPSN 2010 – International Conference

on Parallel Problem Solving From Nature

September 11-15, 2010, Cracow, Poland

Homepage: http://home.agh.edu.pl/ppsn

Deadline: April 6, 2010

The Eleventh International Conference on Parallel Problem Solving from

Nature (PPSN XI) will be held at the AGH University of Science and Tech-

nology in Cracow, Poland on 11-15 September 2010. This biennial meet-

ing aims to bring together researchers and practitioners in the field of

natural computing. Natural Computing is the study of computational sys-

tems, which use ideas and get inspiration from natural systems, including

biological, ecological, physical, chemical, and social systems. It is a fast-

growing interdisciplinary field, in which a range of techniques and meth-

ods are studied for dealing with large, complex, and dynamic problems

with various sources of potential uncertainties.

PPSN XI will be a showcase of a wide range of topics in Natural Com-

puting including, but not restricted to: Evolutionary Computation, Neural

Computation, Molecular Computation, Quantum Computation, Artificial

Life, Swarm Intelligence, Artificial Ant Systems, Artificial Immune Sys-

tems, Self-Organizing Systems, Emergent Behaviors, and Applications to

Real-World Problems. PPSN XI will also feature workshops and tutorials

covering advanced and fundamental topics in the field of natural compu-

tation.

All accepted papers will be presented during poster sessions and will be

included in the proceedings. Following the tradition of PPSN, proceedings

will be published in the Series Lecture Notes in Computer Science (LNCS)

by Springer.

Paper Presentation Following the now well-established tradition of

PPSN conferences, all accepted papers will be presented during small

poster sessions of about 16 papers. Each session will contain papers

from a wide variety of topics, and will begin by a plenary quick overview

of all papers in that session by a major researcher in the field. Past experi-

ences have shown that such presentation format led to more interactions

between participants and to a deeper understanding of the papers. All

accepted papers will be published in the Proceedings.

General Chair

Robert Schaefer (AGH, Cracow, PL)

Honorary Chair

Hans-Paul Schwefel (Tech. Universität Dortmund, DE)

Program Co-Chairs

Carlos Cotta (University of Malaga, ES)

Joanna Kolodziej (University of Bielsko-Biala, PL)

Günter Rudolph (Tech. Universität Dortmund, DE)

Tutorials Chair

Krzysztof Cetnarowicz (AGH, Cracow, PL)

Workshop Chair

Aleksander Byrski (AGH, Cracow, PL)

Important dates

Workshop Proposals Submission January 3, 2010

Workshop Proposals Notification February 19, 2010

Paper Submission April 6, 2010

Author Notification May 21, 2010

Papers Camera Ready Submission June 11, 2010

Early Registration June 11, 2010

Conference September, 11-15, 2010

SIGEVOlution Volume 4, Issue 4 26

http://home.agh.edu.pl/ppsn
http://www.agh.edu.pl/en
http://www.agh.edu.pl/en

FRESHLY PRINTED

Seventh International Conference on Swarm Intelligence

September 8-10, 2010. Brussels, Belgium

Homepage: http://iridia.ulb.ac.be/ants2010

Deadline February 28, 2010

Swarm intelligence is a relatively new discipline that deals with the

study of self-organizing processes both in nature and in artificial systems.

Researchers in ethology and animal behavior have proposed many mod-

els to explain interesting aspects of social insect behavior such as self-

organization and shape-formation. Recently, algorithms and methods in-

spired by these models have been proposed to solve difficult problems in

many domains.

An example of a particularly successful research direction in swarm intel-

ligence is ant colony optimization, the main focus of which is on discrete

optimization problems. Ant colony optimization has been applied suc-

cessfully to a large number of difficult discrete optimization problems in-

cluding the traveling salesman problem, the quadratic assignment prob-

lem, scheduling, vehicle routing, etc., as well as to routing in telecommu-

nication networks.

Another interesting approach is that of particle swarm optimization, that

focuses on continuous optimization problems. Here too, a number of

successful applications can be found in the recent literature. Swarm

robotics is another relevant field. Here, the focus is on applying swarm

intelligence techniques to the control of large groups of cooperating au-

tonomous robots.

ANTS 2010 will give researchers in swarm intelligence the opportunity to

meet, to present their latest research, and to discuss current develop-

ments and applications.

The three-day conference will be held in Brussels, Belgium, on Septem-

ber 8-10, 2010. Tutorial sessions will be held in the mornings before the

conference program.

Relevant Research Areas

ANTS 2010 solicits contributions dealing with any aspect of swarm intel-

ligence. Typical, but not exclusive, topics of interest are:

Behavioral models of social insects or other animal societies that

can stimulate new algorithmic approaches.

Empirical and theoretical research in swarm intelligence.

Application of swarm intelligence methods, such as ant colony opti-

mization or particle swarm optimization, to real-world problems.

Theoretical and experimental research in swarm robotics systems.

Publication Details As for previous editions of the ANTS conference,

proceedings will be published by Springer in the LNCS series (to be con-

firmed). The journal Swarm Intelligence will publish a special issue ded-

icated to ANTS 2010 that will contain extended versions of the best re-

search works presented at the conference.

Best Paper Award

A best paper award will be presented at the conference.

Further Information

Up-to-date information will be published on the web site

http://iridia.ulb.ac.be/ants2010/. For information about local arrange-

ments, registration forms, etc., please refer to the above-mentioned web

site or contact the local organizers at the address below.

Conference Address
ANTS 2010

IRIDIA CP 194/6 Tel +32-2-6502729

Université Libre de Bruxelles Fax +32-2-6502715

Av. F. D. Roosevelt 50 http://iridia.ulb.ac.be/ants2010

1050 Bruxelles, Belgium email: ants@iridia.ulb.ac.be

Important Dates

Submission deadline March 28, 2010

Notification of acceptance April 30, 2010

Camera ready copy May 14, 2010

Conference September 8–10, 2010

SIGEVOlution Volume 4, Issue 4 27

http://iridia.ulb.ac.be/ants2010
http://iridia.ulb.ac.be/ants2010/

FRESHLY PRINTED

January 2011

FOGA 2011 - Foundations of Genetic Algorithms

January 5-9, 2011, Schwarzenberg, Austria

Homepage: http://www.sigevo.org/foga-2011

Enquiries and Submissions: foga@fhv.at

Deadline Monday July 5, 2010

We invite submissions of extended abstracts for the eleventh Foundations

of Genetic Algorithms workshop. FOGA is only held every two years and

focuses on theoretical foundations of all flavors of evolutionary computa-

tion. It will next be held in the Gasthof Hirschen hotel in Schwarzenberg

in Austria from Wednesday, January 5 to Sunday January 9, 2011. Prof.

Dr. Karl Sigmund has agreed to deliver a keynote lecture. Attendance is

limited to people who submitted papers, or those requesting attendance

in advance. Students are particularly encouraged to participate.

Submissions should address theoretical issues in evolutionary computa-

tion. Papers that consider foundational issues, place analysis in the wider

context of theoretical computer science, or focus on bridging the gap be-

tween theory and practice are especially welcome. This does not prevent

the acceptance of papers that use an experimental approach, but such

work should be directed toward validation of suitable hypotheses con-

cerning foundational matters.

Extended abstracts should be between 10-12 pages long. To submit,

please email a compressed postscript or a PDF file to foga@fhv.at no later

than Monday, July 5, 2011. In your email, also include the title of the pa-

per, and the name, address and affiliation of all the authors. Submitted

papers should use standard spacing and margins, with 11pt or 12pt font

for the main text. Authors using LATEX should either use the standard arti-

cle style file or the FOGA style file which can be found at the conference

web-site. To ensure the reviews are double-blind authors are asked to

remove references to themselves from their paper.

Notification will be September 13, 2011 and drafts of the full paper will

be needed by December 6, 2010. These drafts will be distributed as

part of a preprint to participants at FOGA. Authors of papers presented

at the FOGA workshop will be asked to contribute final versions of their

papers (based on discussion/feedback at the meeting) as part of the final

volume.

Important Dates

Extended abstracts due July 5, 2010

Notification to authors September 13, 2010

Registration and room booking deadline October 8, 2010

Pre-proceedings camera ready manuscript due December 6, 2010

FOGA workshop January 5–9, 2011

Post workshop proceedings February 21, 2011

Organizers

Prof. Dr. habil. Hans-Georg Beyer www2.staff.fh-vorarlberg.ac.at/ hgb/

Dr. W. B. Langdon www.dcs.kcl.ac.uk/staff/W.Langdon/

Further Information

Enquiries and submissions: foga@fhv.at

SIGEVOlution Volume 4, Issue 4 28

http://www.sigevo.org/foga-2011
mailto:foga@fhv.at
mailto:foga@fhv.at
http://www2.staff.fh-vorarlberg.ac.at/~hgb/
http://www.dcs.kcl.ac.uk/staff/W.Langdon/
mailto:foga@fhv.at

About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate in an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.

SIGEVOlution Volume 4, Issue 4 29

https://campus.acm.org/public/gensigqj/gensigqj_control.cfm?promo=QJSIG&offering=052&form_type=SIG
mailto:editor@sigevolution.org
http://www.sigevolution.org

