
SIGEVOlution
newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation

Autumn 2007
 Volume 2 Issue 3

in this issue

GA @ The WSC
Vincent de Geus &

the 2007 Nuon Solar Team

Buildable Evolution
Pablo Funes

What is an LCS?
Stewart W. Wilson

The Columns
dissertation corner

new issues of journals
calls & calendar

EDITORIAL

Editorial

A
solar car hisses through the beautiful Australian desert; its racing strategy has been evolved

using a genetic algorithm. Meanwhile, in a university laboratory, Lego structures are evolved

using Genetic Programming. Indeed, this new issue of SIGEVOlution shows some rather un-

usual applications of evolutionary computation and I hope you will enjoy reading it!

In the first paper, Vincent de Geus and the Nuon team from the Delft University of Technology tell us

how they applied a genetic algorithm to optimize the racing strategy for their solar car leading them

to win the World Solar Challenge. In the second paper, Pablo Funes shows us how we can evolve Lego

structures using Genetic Programming while, in the third and last paper, Stewart Wilson provides a gentle

introduction to accuracy-based classifier systems. The subsequent columns provide information about a

recently discussed PhD thesis, the new issues of EC journals, and the calendar of EC events.

The cover photo is by Hans-Peter van Velthoven. More photos of the Nuon team are available here, while

photos of the other competing teams are available from the World Solar Challenge homepage.

This issue is brought to you with the help of Tine Lavrysen, Vincent de Geus, Pablo Funes, Stewart W.

Wilson, Janusz Wojtusiak, and board members Dave Davis and Martin Pelikan.

And remember that SIGEVOlution needs you! So, if you have suggestions or criticisms that may improve

the newsletter, just drop an email to editor@sigevolution.org.

Pier Luca

April 8th, 2008

SIGEVOlution

Autumn 2007, Volume 2, Issue 3

Newsletter of the ACM Special Interest Group

on Genetic and Evolutionary Computation.

SIGEVO Officers

Darrell Whitley, Chair

John Koza, Vice Chair

Erick Cantu-Paz, Secretary

Wolfgang Banzhaf, Treasurer

SIGEVOlution Board

Pier Luca Lanzi (EIC)

Lawrence "David" Davis

Martin Pelikan

Contributors to this Issue

Vincent de Geus

Pablo Funes

Stewart W. Wilson

Contents

GA @ The World Solar Challenge 2

Vincent de Geus &

the 2007 Nuon Solar Team

Buildable Evolution 6

Pablo José Funes

What Is a Classifier System? 20

Stewart W. Wilson

Dissertation Corner 24

New Issues of Journals 26

Calls and Calendar 27

About the Newsletter 31

ISSN: 1931-8499SIGEVOlution Autumn 2007, Volume 2, Issue 3

http://wsc.org.au/
http://wsc.org.au/Be.Part.of.It/Photos/Hans.Peter/
http://wsc.org.au/
mailto:editor@sigevolution.org

World Solar Challenge:
the Race Strategy Explained

Vincent de Geus & the 2007 Nuon Solar Team, Delft University of Technology, The Netherlands, info@nuonsolarteam.com

In the summer of 2006 a new team consisting of students from the Delft

University of Technology was formed to continue the unprecedented suc-

cess of the Nuon Solar Team. The team’s members represent the largest

faculties of the TU Delft, these include: Aerospace, Mechanical, Maritime

and Electrical Engineering as well as the faculty of Industrial Design En-

gineering. Besides technical prowess, the team’s members also display

organizational, creative, entrepreneurial, and practical skills that built on

the unparalleled successes already achieved. The new team began work

in September 2006 on a completely new design for a solar vehicle able to

compete in the new "Challenge" class of the Panasonic World Solar Chal-

lenge, the premier solar car race in the world. Besides competing in this

event, the team attend events around the European Union to promote in-

novation and continue the drive towards sustainability. On October 25th

2007, they crossed the finishline first in Adelaide, Australia, and became

winners of the Panasonic World Solar Challenge. This was the fourth time

in a row the Nuon Solar Team from Delft University of Technology won

this prestigious race through the Australian continent.

The Challenge

The idea for the World Solar Challenge originates from Danish-born ad-

venturer Hans Tholstrup. As early as the 1980s, he became aware of the

need to explore sustainable energy as a replacement for limited avail-

able fossil fuel. Sponsored by BP, he designed the world’s first solar car,

called Quiet Achiever, and traversed the 4052 km between Sydney and

Perth in 20 days. In 1987 the first World Solar Challenge took place, and

since 2001 four Nunas (Nuon teams) have been first over the finish line.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 2

EDITORIAL

Since solar cars rely only on solar power, one is forced to handle this

energy in the most effective way. That is why a good energy management

system, or strategy, is required. The optimization task is to minimize

the race time while respecting the boundary conditions and constraints

imposed by the system and the race regulations. The problem can then

for example be solved using classical optimal control theory, as was done

by the Australian team Aurora (Pudney, 2000).

The Nuna approach however, has always been different. In 2001 it was

implemented for the first time (Trottemant, 2002) using genetic algo-

rithm optimizer (Goldberg, 1989) techniques. Genetic algorithms are

known for their good performance at optimizing complex problems with

many parameters and a simple objective. In addition, in 2005 a smart

adaptive cruise control was implemented with the use of Model-Predictive

Control techniques (Boom and Back, 2004).

Problem definition

Each race day starts at 0800 and ends at 1700. After 1700 and before

0800 the teams are not allowed to drive anymore, but they may do ’static

loading’. This means that the solar panel is held perpendicular to the sun

for maximum efficiency. During the race there are 7 control points where

the teams have to stop for half an hour before continuing. In this times-

pan, it’s also possible to do ’static loading’. Since the 2007 World Solar

Challenge, a rest day was added in Alice Springs. Most of the teams were

able to fully recharge their batteries so that the race was actually split

into two stages. This made the optimization problem less complex, but it

added some tense situations because the batteries could now be drained

twice. One or two hours before the end of a race day, an expected end-

point was briefed to the meteo car which was driving 100km in front,

so that they could find a good place for a campsite, with enough ’static

loading’ possibilities. The coordinates of the campsite were sent back to

the Mission Control, and now the optimization task was to arrive at this

campsite as close as possible to 1700. Arriving too early would give a loss

of valuable race time, whilst arriving after 1710 would result in penalty

minutes.

During the optimization we have the following constraints: The battery

state of charge is bounded between the maximum energy storage the

batteries can contain, and a minimum value, which is a safety margin.

The velocity is also bounded, because the race is driven on public roads,

where local traffic rules apply.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 3

EDITORIAL

Optimization strategy

In this section, we describe the optimization tools which were used to

calculate an optimal average velocity during the race. The optimiza-

tion used a database which was filled with GPS data for the whole track

(3000km), giving the road direction and inclination every 100 meters.

Also important was the place and time dependent weather database

which combined weather information from more than 20 weather sta-

tions along the race route. This database was kept up to date by call-

ing airports and downloading the latest report during the race (satellite

phone).

Dynamic programming techniques (Bertsekas, 2005) are used to divide

the problem into overlapping subproblems. Longterm strategy deals with

the whole race but is less detailed than the midterm strategy, which only

optimizes over 1 day. The longterm optimization problem is defined as a

time optimization and ends when the whole trajectory is accomplished.

The end distance is thus fixed, the start distance is not, because the op-

timization can be started at any point in the race. The parameter that is

optimized is the total race time. This is done with respect to the velocity

of the car. To make the set of possible solutions relatively small, the race

trajectory is divided into intervals with almost equal properties (direction,

inclination, longitude, latitude). The velocity is assumed to be constant

for the whole interval. The genetic algorithm now starts building a popu-

lation of members, where each member consists of the velocity of every

interval. This member is inserted into the mathematical model, which is

not further discussed in this article, and this results in a total race time

and the number of times the battery state of charge bounds are hit. Ev-

ery solution that causes the batteries to drain (hitting the lower bound)

gets a penalty, and therefore this solution will lose the evolutionary strug-

gle against a member that doesn’t hit those bounds. Also, solutions that

arrive at the finish line early have a better fitness than slower solutions,

and therefore they stay alive and produce even better solutions in their

offspring.

Exactly the same happens with the midterm strategy, but there are sev-

eral differences. First, the optimizer only considers one day, but the

interval is now 15 minutes. Therefore this optimizer is much more de-

tailed than the longterm optimizer. The reason this can’t be done with the

longterm strategy is that there would then simply be too many possible

solutions, which reduces the chance of finding the optimal one. Another

important difference is the parameter that is optimized; for the midterm

strategy it is the distance, with a fixed battery state of charge as a con-

straint. This battery state of charge is obtained from the longterm strat-

egy and defines a power budget for the day. If this battery state of charge

is reached by the end of the day, one can be sure to reach the finish line

without having to stop due to empty batteries.

Bibliography

[1] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena

Scientific, 3rd edition, 2005.

[2] T. Van Den Boom and T. Back. Course notes model predictive control.

Technical report, Dutch Institute for Systems and Control, 2004.

[3] D. E. Goldberg. Genetic Algorithms in Search Optimization and Ma-

chine Learning. Addison Wesley, 1989.

[4] P. Pudney. Optimal energy management for solarpowered cars. PhD

thesis, University of South Australia, 2000.

[5] D. M. Roche, A. E. T. Schinckel, J. W. V. Storey, C. P. Humphris, and

M. R. Guelden. Speed of Light The 1996 World Solar Challenge. Pho-

tovoltaics Special Research Center University of New South Wales,

1997.

[6] E. J. Trottemant. Alpha centauris strategy during the wsc 2001. Tech-

nical report, European Space Agency, 2002

SIGEVOlution Autumn 2007, Volume 2, Issue 3 4

EDITORIAL

About the authors

The members of the 2007 Nuon Solar Team are: Stefan Roest (Team-

leader), Tine Lavrysen (Public Relations & Ergonomics), Demian de

Ruijter (Chief Engineer), Ivo Hagemans (Production & Logistics), Joep

Steenbeek (Production & Ergonomics), Susan Luijten (Aerodynam-

ics), Oliver van der Meer (Aerodynamics & Finance), Paul Beckers

(Electronics & Telemetry), Vincent de Geus (Electronics & Strategy),

Rabih Al Zaher (Mechanics), Hjalmar Van Raemdonck (Structural De-

sign), and Gert Kraaij (Mechanics). The photos are by Hans-Peter

van Velthoven, more photos of the Nuon team are available here.

Homepage: http://www.nuonsolarteam.com

Email: info@nuonsolarteam.com

SIGEVOlution Autumn 2007, Volume 2, Issue 3 5

http://wsc.org.au/Be.Part.of.It/Photos/Hans.Peter/
http://www.nuonsolarteam.com
mailto:info@nuonsolarteam.com

Buildable Evolution

Pablo José Funes, Icosystem Corporation, Cambridge (MA), US, pablo@icosystem.com

The most interesting results in Artificial Life come about when some as-

pect of reality is captured. In the mid-1990s, Karl Sims energized the AL

community with his ground-breaking work on evolved moving creatures

[28, 29]. The life-like behavior of Sims’ creatures resulted from combining

evolved morphology with a physics simulation based on Featherstone’s

earlier work [9].

The question that begged asking was: can a similar thing be done in the

physical world? Can we make creatures that walk out of the computer

screen and into the room?

Two components were required: a language to evolve morphologies that

have real-world counterparts, and a way to build them — either in sim-

ulation or by automated building and testing. We set out to demon-

strate that buildable evolution was possible using a readily available,

cheap building system — Lego bricks – and an ad-hoc physics simulation

that allowed us to study the interaction of the object with the physical

world in silico; with respect to gravitational forces at least. The result

[10, 14, 12, 13, 15, 16, 25, 23, 26, 24, 27] is a system that can evolve a

variety of different shapes and is very easy to use, set up and replicate.

Here I present an overview of the evolvable Lego structures project. Co-

inciding with the publication of this article, the source code is being re-

leased to the community (demo.cs.brandeis.edu/pr/buildable/source).

1 Evolving Toy Brick Structures

With Genetic Programming (GP) Koza introduced the notion of evolving

expressions using their parsing trees [19]. GP’s breakthrough was to

evolve trees using simple operations: recombinate by cutting and pasting

subtrees, mutate by changing a node’s properties. The present work

could be considered an embodiment of GP. Intuitively, it makes sense to

think of Lego building as trees: to start, you hold the first brick, then grab

a second one, and attach it to the first. The third brick will be attached to

either of the previous ones, possibly both, and so on.

Here Lego bricks are encoded by a tree data structure where each node

represents one brick. There are two versions: one for two-dimensional

structures only [13] and a later one that works for 3D as well [15, 16].

“2D” Lego structures are flat, made with bricks of width 1 and different

lengths.

In 2D a node has an integer parameter to define the length of the brick

and four branches (Fig. 1). Branches correspond to attachment loci

(lower left, lower right, upper left, upper right). The shi f t parameter en-

codes the number of knobs a descendant “bites” into the parent. Fig. 2

shows an example. The 2D encoding was extended to cover 3D struc-

tures and bricks wider than 1 (Fig. 3). The 3D encoding dropped the no-

tion of “attachment loci” in favor of an arbitrary list of descendants with

(x,y,z,θ) coordinates to describe the position and rotation of attached

bricks relative to the parent (Fig. 4).

SIGEVOlution Autumn 2007, Volume 2, Issue 3 6

http://demo.cs.brandeis.edu/pr/buildable/source

EDITORIAL

brick ::= (size, joint, joint, joint, joint)

joint ::= nil | (shi f t, brick)

size ∈ {4,6,8,10,12,16}†

shi f t ∈ 1..6

Fig. 1: Grammar for 2D structures. †Available brick sizes depend on the

brick set used by the experiment.

(6)

0

23

(4)
1

(6 nil (2 (4 nil nil nil)) nil nil)

Fig. 2: Example of 2D genetic encoding of bricks and corresponding

structure. The 6× 1 brick is the root and the 4× 1 brick is attached at

site 1, “biting” 2 knobs.

brick ::= (n×m, (jointlist))

jointlist ::= /0 | joint jointlist

joint ::= ((x,y,z,θ) brick)

n×m ∈ {2×1,4×1,2×2,4×2,6×1,8×1,10×1,12×1}†

x ∈ 1..n, y ∈ 1..m, z ∈ {−1,1}, θ ∈ {0o,90o,180o,270o}

Fig. 3: Grammar for 3D structures. †Available brick sizes set by the ex-

periment.

0
1

2
3

4
5 0

1
2

0.5

1

1.5

2

2.5

(0,0,1) 90° 1x2 (0,0,1) 270° 1x2

1x4

(3,0,1) 90° 1x2

(1×4(((3,0,1,90o)(1×2(((0,0,1,90o)

(1×2nil)(((1,0,1,270o)(1×2nil)))))))))

Fig. 4: 3D encoding example in Lisp form and tree form, and correspond-

ing bricks structure.

1.1 Mutation and Crossover

Mutation is easy to define with the encoding just described. Choosing a

brick at random and changing the brick size parameters (n,m) replaces it

with a brick of a different size. Perturbing the parameters (x,y,z,θ) that

define the position of the brick with respect to its parent results in a new

position for the brick – and its descendants along with it. Even though

this is sufficient to evolve many structures, later on we added a longer

list of mutations aimed at modifying the structure in small, meaningful

steps (see table 1). In order to do crossover, take two parent trees A and

B and select random nodes a and b on each one. Remove a and insert b in

its place. Crossover is fundamental here, as the only form of replication

of parts and components. Without crossover the EA had a major drop in

performance ([11] § 2.5).

1.2 Development

The result of either crossover or mutation is a new structure tree. Both

operations are capable of producing invalid trees — trees with overlap-

ping bricks or that violate other constraints (total number of bricks avail-

able, spatial bounds and so on). The tree is developed and pruned in

order to reduce it to one representing a valid tree.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 7

EDITORIAL

Shrink Choose a random node and decrease the brick size down to

the next valid size. Also, randomly choose to either let de-

scendants slide in, following the change in size or keep de-

scendants in the same absolute position.

Grow Choose a random node and increase the brick size on either

end. Randomly choose to move descendants along or keep

their absolute positions.

Shift Choose a random joint and modify its position by shifting it

one step in the front, back, left or right direction, or turning

90o. Randomly choose to keep descendants in place or have

them move along.

Add Choose a random node, add a new brick at a random position.

Tab. 1: List of mutations

The newly formed tree is visited in left-to-right, depth-first-search order.

Before placing each brick, constraints are checked. If there is another

brick there already, or the number of bricks already equals the maximum

allotted, or if one of the bricks’ ends falls outside of the bounds set by the

experiment, then that brick cannot be placed. The corresponding node is

replaced with NIL.

The following mutation of Fig. 4, for example, is invalid because the third

brick (z mutated to -1) is now below the second one, but the first brick is

already there.

(1×4(((3,0,1,90o)(1×2(((0,0,−1,90o) (1)

(1×2nil)(((1,0,1,270o)(1×2nil)))))))))

The tree is pruned and three bricks remain:

(1×4(((3,0,1,90o)(1×2(((1,0,1,270o)(1×2nil)))))))) (2)

This procedure insures a one-to-one correspondence between nodes in

the tree and bricks in the structure. The development process inher-

ent to brick structures allows us remove “introns” — unused parts of the

genome — to obtain a lean encoding. Bloat, the abundance of unreach-

able subexpressions, is a well known problem. In GP there is no general-

purpose method to know when a subexpression is unused and therefore,

bloat-reducing methods must rely on heuristics instead [8].

Interestingly, bloat is still a potential problem even when the lean en-

coding is used, since structures frequently have bricks that do not fulfill

any function. Occasionally such bloat can be useful as a form of random

exploration or genetic drift that has the potential of achieving new solu-

tions. Additionally, since recursion is not allowed in the encoding, nor any

introns, sometimes non-functional “limbs” evolve that serve as a sort of

genetic repository for an evolving family of structures.

A side-effect of this test-and-prune method is that often there is a reduc-

tion in the total number of bricks. As a consequence, a “remove random

brick” mutation is not usually included (Table 1).

Although there is a development process associated with our represen-

tation of Lego bricks, it cannot be called a developmental representation

because there is no recurrence. Reuse of elements is granted here by

the reliance on crossover. Crossover generates repetitions when a copy

of a subtree is spliced into a branch of itself and most of our evolved

structures end up having repeated patterns.

1.3 Testing

The final step in the mutation/crossover procedure is calling the simulator

to verify that the new structure can hold its own weight. If this is the case

then the mutation/crossover is successful, and we proceed to evaluate

the fitness.

1.4 Evolutionary Algorithm

We use a plain steady-state Evolutionary Algorithm (EA) (Table 2). Typi-

cally the first individual consists of just one brick, which guarantees that it

can hold its own weight. The population size is usually 1000. We deliber-

ately stayed away from optimizing the evolutionary algorithm too much

— the point of the work being that buildable structures can be evolved

and deployed, not how fast it can be done.

1.5 Buildable vs. Incrementally Buildable

The development described above is almost a building process. If the

structure was to be built by adding one brick after the other, in the order

specified by the tree, two things could still go wrong: the structure might

not hold its own weight in some of the intermediate configurations, and

also, if there’s a brick above and another brick below the one you are

SIGEVOlution Autumn 2007, Volume 2, Issue 3 8

EDITORIAL

1: Create random individual I
2: Initialize population P = {I}
3: while best fitness < target fitness do

4: Randomly select mutation or crossover

5: Select 1 (for mutation) or 2 (for crossover) random individual(s)

with fitness proportional probability

6: Apply mutation or crossover operator

7: Prune

8: Compute gravitational stresses

9: if (the new model can support its own weight) then

10: if (|P|=Population Size) then

11: Remove a random individual from P, chosen with inverse

fitness proportional probability

12: end if

13: Add the new model to P

14: end if

15: end while

Tab. 2: Simple steady-state EA

trying to add, one of them has to be removed before you can do the

insertion. Adding those two additional constraints would mean that the

encoding represents not only the final structure, but also an algorithm for

building it. We are tempted to call this a constructable structure.

This idea is intriguing; for example: designing a bridge to be deployed

over a river is one thing, but a different one is planning a bridge that

can be built entirely from one side, adding successive bricks to complete

the span. You cannot cross the bridge, but you can always walk over the

partial bridge to add another block.

2 Stability of Lego Structures

Lacking an automated procedure for building and testing brick structures

in hardware, we had to rely on simulations to produce objects that can

hold their own weight. Our simulator, although it is a very simplified

version of reality, led to a computationally difficult problem for which a

fully satisfactory solution is yet to be found.

Fig. 5: Fulcrum effect: two joined bricks are easy to break apart when

the point of contact is used as a fulcrum. This effect led to simulating the

union as a pin joint subject to torque (cf. Table 3).

It makes intuitive sense to focus a simulation for Lego bricks under grav-

itational stresses on what happens at the joints between bricks. When

you are trying to separate two bricks, it is hard to do so by simply pulling

apart in a direction perpendicular to the plane of contact. It is much eas-

ier to snap them by using the bricks as levers (Fig. 5). The fulcrum effect

led to the idea of thinking of brick unions as planar “pin” joints. We pre-

tend the structure is a mesh of rigid bars held to each other by pins with

relatively large static friction coefficients (Fig. 6). Each brick corresponds

to a bar, and each area of contact to a pin. When the torque at any one

pin exceeds its friction coefficient, the joint turns, breaking the structure.

With this assumption all the forces in the model became torques. Each

joint has a “capacity”, implying that it can bear up to a certain amount of

torque without budging. Exactly how much torque is something we can

measure (Table 3). When evolving structures the gravitational constant

was set to 1.2 to add a margin of safety.

From a structure formed by a combination of bricks, our model builds a

network with joints of different capacities. Each load has a site of ap-

plication in one node — each brick’s weight is a force applied to itself;

external forces also enter the structure through one brick — and has to

be canceled by one or more reaction forces for that brick to be stable.

Reaction forces can come from any of the joints that connect it to neigh-

bor bricks. But the brick exerting a reaction force becomes unstable and

has to be stabilized in turn by a reaction from a third brick. The load

thus “flows” from one brick to the other. Following this principle, a load is

propagated through the network until finally absorbed by the ground.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 9

EDITORIAL

Joint size (ω) Approximate torque capacity (κω)

knobs N-m×10−3

1 12.7

2 61.5

3 109.8

4 192.7

5 345.0

6 424.0

n > 6 † ≥ 424n/6

Tab. 3: Measured torque capacities of linear Lego joints. †A conservative

estimate used for longer joints.

−160 −140 −120 −100 −80 −60 −40 −20 0 20 40
−2

0

2

4

6

8

10

Fig. 6: Model of a 2D Lego structure showing the brick outlines (rectan-

gles), centers of mass (circles), joints (diagonal lines, with axis located

at the star), and “ground” where the structure is attached (shaded area).

The thickness of the joint’s lines is proportional to the strength of the

joint. A load distribution was calculated for all joints. The ones nearing

their capacity are in yellow, less stressed ones red.

2.1 Networks of Torque Propagation

The principle of propagation of forces described generates a set of simul-

taneous equations, a “Network of Torque Propagation” (NTP). A solution

of the NTP describes a way that loads can distribute among the network

of bricks such that no joint is stressed beyond its maximum capacity, and

so the structure does not break.

Let F be the force corresponding to one of the loads in the structure.

For an arbitrary joint j in the structure, if F had to be supported by j its

magnitude as a torque acting on j would be proportional to the length of

the arm. The fraction α of F that j can take is

α j,F = max
{

1,

∣∣∣∣ K j

d(j,F)F⊥

∣∣∣∣} (3)

where K j is the maximum capacity of the joint, d(j,F) the length of the

load arm (distance from the point of application to j) and F⊥ the compo-

nent of F perpendicular to the arm.

If the torque τ = d(j,F)F⊥ generated is less than the joint maximum K,

then α = 1 (i.e. the joint fully supports F); otherwise α = K/τ . Note that

F⊥ can have a positive or negative sign depending on whether the torque

acts clockwise or counterclockwise.

The problem of whether the stresses generated by F can be propagated

through the structure is equivalent to the well-known Network Flow Prob-

lem (NFP) [7]. Nodes in the NFP correspond to bricks in the structure; the

source is the brick to which the force is applied, the sink is the ground,

and each joint is a vertex between two nodes with capacity α j,F . A max-

imum flow φ valued 1 corresponds to a valid distribution of the force F

throughout the structure such that no joint exceeds its capacity. If the

maximum flow is less than one, its value is the fraction of F that the

structure can hold without breaking.

When more than one force is involved, a solution for the NTP problem

can be described as a set {φF} of network flows valued one, one for each

force. As multiple forces acting on a joint add to each other, the com-

bined torques must be equal to or less than the capacity of the joint, thus

adding the additional constraint∣∣∣∣∣∑F φF(j)d(j,F)F⊥

∣∣∣∣∣≤ K j (4)

This multiple force NTP is equivalent to a more difficult problem, the Mul-

ticommodity Network Flow Problem (MNFP)[1, ch. 17].

SIGEVOlution Autumn 2007, Volume 2, Issue 3 10

EDITORIAL

2.2 NTP Algorithms

The NFP problem has well known polynomial-time solutions [7] but MNFPs

are much harder, and fall into the general category of Linear Program-

ming (LP). There is a fair amount of research on the multicommodity

problem [17, 2, 18, 21] but these algorithms are still orders of magni-

tude slower than the NFP case.

2.2.1 Greedy Algorithm

A possible approach to solving NTPs is a greedy algorithm: take the first

force F1. If a solution to the corresponding NFP can be found then use the

corresponding flow to compute a residual capacity K′ for all joints (eq.

5). The residual capacity represents how much extra force can each joint

take in addition to the stress induced by the first force.

K′j = K j−φF(j)δ (j,F)||F || (5)

A new NFP for the second force with respect to the residual capacities can

now be computed and solved. Iterating through all forces, if successful,

yields a valid set of flows compliant with eq. 4. To solve for a single force

we first tried a naive algorithm (compute recursively for each joint the

percentage of F it can support) until we found the NFP approach. Later

we used the PRF algorithm [5].

Greedy algorithms miss some solutions but are quick, and for many ex-

periments were enough to evolve good solutions.

2.2.2 LP Solver

A second approach to NTPs is to use an MNFP-specific algorithm. PPRN

[4] was tried. This algorithm can always find the solution — if there is one

— but, as other LP algorithms, takes exponential time in the worst case.

In practice, evolving using PPRN turned out to to be slower than using the

greedy solver, approximately by a factor of 10.

2.2.3 Embedded Solver

It is somewhat paradoxical that a study advocating evolutionary compu-

tation would run into difficulties when dealing with classic search algo-

rithms such as LP. Can we not solve the NTP with a GA? Furthermore, if

some of the computation used to solve the loads of a structure could be

inherited by its descendants, it could be a major source of optimization.

The embedded solver is an attempt to do just that - instead of nested

search algorithms (one evolving the locations of the bricks, an internal

one solving the structure’s equations) we designed an EA with two kinds

of mutations: mutations for changing bricks’ parameters and also muta-

tions to distribute flows of loads within the structure. The genotype was

extended to encode the position of the bricks and additionally the flow

for each force from a brick to the next. So not only the layout of the

structure is encoded in the genotype, but also the proof of its stability.

For additional details on this approach, see [11].

The embedded solver was used successfully in several experiments. It is

faster than the greedy solver; however, some results obtained with the

greedy and LP solvers, notably the “long bridge” of Section 4.1 could not

be replicated. We still think that an embedded solver is an intriguing idea

that requires further investigation.

3 Evolving Simple Structures with EvoCAD

EvoCAD is a toy CAD system to design simple 2D Lego structures, testing

their gravitational resistance and evolve them (Fig. 7). EvoCAD allows

the user to set up two kinds of goals: target points are points the struc-

ture should touch and loads are external loads that the structure should

support. Additionally, restrictions can be set (points that the structure

cannot touch). At least one ground is required, and one or more initial

bricks. The fitness function is inferred from target and load points:

∑
t∈targets

1
1+d(S, t)

+ ∑
l∈loads

1
1+d(S, l)

+ ∑
l ∈ loads
d(S, l) = 0

supp(S, l) (6)

(where d is the distance between a target/load point and the structure S,

and supp the fraction (maximum flow) of a certain load that the structure

supports).

When the evolve button is pressed, the population is seeded with the

current structure and evolved until all objectives are satisfied, or a time-

out (20 seconds) is reached. The result is shown to the user who can

make modifications to the design, press the “test” button for testing the

structure, update objectives and evolve again; the new structure seeds

the next round. EvoCAD uses the embedded solver for evolving speedy

solutions in just a few seconds and the LP solver for the manual “test

structure” button.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 11

EDITORIAL

(a) (b)

(c) (d)

Fig. 7: Sample working session with the EvoCAD program: (a) The user has defined two grounds and several evolutionary hints: restrictions (×), target

(•) and load (↓); an initial brick was laid down. (b) Evolution designed a structure that fulfills all requirements. (c) The user made cosmetic corrections

(d) The structure has been built with Lego bricks.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 12

EDITORIAL

Bricks {4,6,8,10,12,16}

Max bricks 127

Base (0,-1). . .(-39,-1)

x,y domain (-310,41)×(-2, 80)

Target Point T (-300,0)

Fitness 1− d(S,T)
d(0,T)

Solver Greedy/Recursive

Tab. 4: Long bridge problem specification

EvoCAD demonstrates the potential of Evolutionary Design [3] for a new

kind of collaborative applications where the CAD system is not only an

intelligent canvas, but proposes solutions of its own. Similar to what hap-

pens in Interactive Evolutionary Computation [20, 30], here the feedback

loop leads to solutions that neither can do on their own.

4 Evolved Structures

4.1 Long Bridge

The idea for this experiment is to see how long a beam can be evolved,

supported on a fixed Lego table, that supports its own weight. The ex-

perimental design defines a ground, 40 knobs in length, supporting the

structure, and a fitness function which is the distance between structure

and a faraway target point at (-300,0) (Table 4).

The EA was run for several days, until it no longer seemed to be coming

up with additional improvements. The resulting structure was longer than

we imagined, a cantilevered beam made entirely from Lego pieces that

spans 1.70m (Figs. 9 and 8)

Interestingly, part of the solution is a smaller beam going up in the oppo-

site direction that serves as counterbalance, alleviating part of the load

on the bricks that hold the bulk of the structure.

4.2 Crane

The “crane” experiment had a more complicated setup. Here the aim

was to design the arm for a crane that could lift a weight. The rotating

base of the crane was designed by us; the evolved structure must attach

to it via the “predefined bricks” included in the experiment (Fig. 11).

−200 −150 −100 −50 0
0

5

10

15

20

0.700369

cm

cm

Fig. 8: Long Bridge Scheme. The network represents the distribution

of loads found by the solver; thicker lines correspond to stronger joints.

Yellow joints are stressed to the max, whereas red ones are not.

A crane base was manually designed with motors for rotating the arm

and pulling the hook. The evolved crane attached to it using 5 “prede-

fined bricks”. The fitness value is the horizontal length x of the arm, but

if the maximum load M supported at the tip is less than 250 g then x
is multiplied by M/250, thus reducing the fitness (Table 5). The role of

crossover is clearly visible in Fig. 12 where a counterbalance structure

evolved first to help supporting the load and later replicated — a triangu-

lar shape appeared by chance, but was able to better support the crane’s

load, becoming part of the final design.

4.3 Tree

The “tree” experiment was designed to test out whether some structural

characteristics of life forms (branching, symmetry) could evolve as a con-

sequence of the environment. The design of a tree in nature is a product

of conflicting objectives: maximizing the exposure to light while keeping

internal stability.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 13

EDITORIAL

Fig. 9: Long Bridge.

Fig. 10: Crane with a diagonal crane arm: intermediate (left) and final (right) stages.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 14

EDITORIAL

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

��������
��������
��������
��������

��������
��������
��������
��������

0

250g

Evolving
Object

x

y

x length

Limits

Predefined Bricks

Fig. 11: Crane arm experiment

Bricks {4,6,8,10,12,16}

Max Bricks 127

Base (0,-1). . .(-16,-1)

x,y domain (-50,22)×(-1,40): y > -x

Fixed Bricks 5 (see fig. 11)

Solver Greedy (Recursive)

Fitness 1+(−x)supp(L)
x position of leftmost brick

supp(L) fraction of 250g load supported

Tab. 5: Setup of the crane experiment.

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

35

17.000000

cm

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

35

18.100000

cm

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

35

19.900000

cm

Fig. 12: Three stages on the evolution of crane show frequent reuse

of subparts by means of crossover.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 15

EDITORIAL

Bricks {1,2,4,6,8,10,12,16}

Max Bricks 127

Base (0,-1)–(2,-1)

x,y domain (-50,52)×(0,45)

Solver Embedded

Fitness fL + fR + fT
fL fL = ∑

45
j=0 max(0,−min{x : (x, j) ∈ S})

fR fR = ∑
45
j=0 max(0,max{x : (x, j) ∈ S})

fT fT = ∑
52
i=−50 max(0,max{y : (i,y) ∈ S})

Tab. 6: Setup of the tree experiment. The fitness components fL, fR, fT

represent “light” coming from the left, right and top (Fig. 13)

The experimental design for the Lego tree has a narrow attachment base:

only three knobs. This provides very little support for cantilevering, so

the structure needs to be balanced to reach out. The evolutionary goal

of the structure is to maximize exposure to light by reaching high and

wide. This simulates how real trees compete for light by reaching high

and having a larger surface (Table 6 and Fig. 13).

There were no symmetry-oriented operators in our experiments, as could

be, for example a “reverse” recombination operator that switched the ori-

entation of a subpart. This means that symmetry is not encouraged by

representational biases. Instead, the problem setup requires balancing

the total weight of both sides. The tree did evolve, however, with a cen-

tral symmetry with branches reaching out, by evolving the same solution

independently on both sides.

The general layout of the evolved tree has several similarities with that

of a real tree: there is a (somewhat twisted) trunk, with branches that

become thinner as they reach out, and “leaves”, bulky formations that

maximize the surface at the end of the branch.

4.4 Table

To demonstrate the 3D version of our algorithm a setup somewhat similar

to the tree experiment was used. Here the idea is to design a “table” with

a flat surface (Table 7).

Light

0

Object

x

Evolving

y

Base

Fig. 13: Tree experiment

Bricks
1×1,2×1,2×2,3×1,3×2,4×1,4×2

6×1,8×1,10×1,12×1
Max Bricks 150

Base [−2 . . .2]× [−2 . . .2]× [−1]
x,y,z domain [−9 . . .10]× [−9 . . .10]× [0 . . .15]

Solver Embedded

G 5†

Fitness ∏x,y f (x,y)+ p
f (x,y) 9+height(x,y)

160
height(x,y) 1+max{z : (x,y,z) ∈ S}

p 1− mass(S)
8 ·150

Tab. 7: Setup of the table experiment. The fitness, somewhat convo-

luted, is based on height of the structure at each valid (x,y) plus a pre-

mium p for lightness. †The gravitational constant was set to 5 times the

normal value to encourage a strong design.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 16

EDITORIAL

Fig. 14: Evolved table.

The fitness function rewards a structure that reaches as high as possible

on every column, so the table grew high, hitting the roof (maximum z

value allowed) to create a flat surface. A premium for small mass was

added. The final result (Fig. 14) is a nice design, but reveals some limita-

tions of our EA: there are some holes as the surface was not fully covered;

and there are some bricks that have no apparent function. The second

problem should be addressed with a multiobjective EA; the first is an in-

teresting open question: is the EA capable of efficiently finding a tiling

coverage of a surface?

5 Discussion

Evolution of robots and other physical entities is a very active field to-

day; automated fabrication of Lego structures has not been achieved;

however, rapid prototyping machines are capable of “printing” evolved

structures straight out of an evolutionary algorithm. There are also some

initial examples of self-assembly, where modular components latch on to

each other as a result of random motion or robotic search (see [22] for an

overview). Evolving Lego structures remains a cheap system that does

not require expensive machinery nor electronics, only a little patience to

put together the results.

Our simulator remains an ad hoc construction that would benefit from a

more standard engineering approach. At the same time, the idea of em-

bedding the solver in the representation (the embedded solver of §2.2.3)

is powerful and deserves a more thorough investigation. As for the sys-

tem itself, extending the functionality of the EA with the addition of a

multiobjective algorithm [6] is a must, as there is usually more than one

objective involved. Typically, there are at least the objectives of sup-

porting one or more loads and minimizing the number of bricks in the

structure at the same time.

Instead of devising an expert system with rules about how to divide a

task into subtasks, and how to carry along with each of those, Evolution-

ary Design as shown here relies on lower-lever knowledge. The rules of

physics, unlike the rules of design, are not an artificial creation, and this

leads to novel, surprising solutions. The evolutionary algorithm explores

design space in ways which are not so strongly pre-determined by our

culture, and so the resulting objects have an alien look. We believe that

useful inventions, no matter how weird they might look in the beginning,

are eventually incorporated into the culture if they are useful. Just as

today we trust our lives to an airplane (which at first glance seems in-

capable of flight), tomorrow we may walk over bridges designed by an

evolutionary algorithm.

Acknowledgments

This research was carried out at the DEMO lab in Brandeis University

under the supervision of Jordan B. Pollack (www.demo.cs.brandeis.edu).

SIGEVOlution Autumn 2007, Volume 2, Issue 3 17

http://www.demo.cs.brandeis.edu

EDITORIAL

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice

Hall, Englewood Cliffs, 1993.

[2] A. Ali, R. V. Helgason, J. L. Kennington, and H. Lall. Computational

comparison among three multicommodity network flow algorithms.

Operations Research, 28:995–1000, 1980.

[3] P. Bentley, editor. Evolutionary Design by Computers. Morgan-

Kaufmann, San Francisco, 1999.

[4] J. Castro and N. Nabona. An implementation of linear and nonlin-

ear multicommodity network flows. European Journal of Operational

Research, 92:37–53, 1996.

[5] B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel

method for the maximum flow problem. Algorithmica, 19:390–410,

1997.

[6] C. A. Coello Coello. Metaheuristics for multiobjective optimization. a

genetic multiobjective optimization tutorial. IEEE Swarm Intelligence

Symposium, 2003.

[7] T. H. Cormen, C. Leiserson, and R. L. Rivest. Introduction to Algo-

rithms. MIT Press - McGraw Hill, 1989.

[8] E. De Jong and J. B. Pollack. Multi-objective methods for tree size

control. Genetic Programming and Evolvable Machines 4, 211-233,

2003.

[9] R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic Pub-

lishers, Norwell, MA, 1987.

[10] P. Funes. Evolution of Complexity in Real-World Domains. PhD thesis,

Brandeis University, Waltham, Mass., May 2001.

[11] P. Funes. Evolution of complexity in real-world domains. Brandeis

University Dept. of Computer Science PhD Dissertation, 2001.

[12] P. Funes, L. B. Lapat, and J. B. Pollack. EvoCAD: Evolution-assisted

design. In Artificial Intelligence in Design’00 (Poster Abstracts),

pages 21–24. Key Centre of Design Computing and Cognition, Uni-

versity of Sidney, 2000.

[13] P. Funes and J. B. Pollack. Computer evolution of buildable objects.

In P. Husbands and I. Harvey, editors, Fourth European Conference

on Artificial Life, pages 358–367. MIT Press, Cambridge, 1997.

[14] P. Funes and J. B. Pollack. Componential structural simulator. Techni-

cal Report CS-98-198, Brandeis University Department of Computer

Science, 1998.

[15] P. Funes and J. B. Pollack. Evolutionary body building: Adaptive phys-

ical designs for robots. Artificial Life, 4(4):337–357, 1998.

[16] P. Funes and J. B. Pollack. Computer evolution of buildable objects.

In P. Bentley, editor, Evolutionary Design by Computers, pages 387

– 403. Morgan-Kaufmann, San Francisco, 1999.

[17] M. D. Grigoriadis and L. G. Khachiyan. An exponential-function

reduction method for block-angular convex programs. Networks,

26:59–68, 1995.

[18] A. Iusem and S. Zenios. Interval underrelaxed Bregman’s method

with an application. Optimization, 35(3):227, 1995.

[19] J. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, Cambridge, 1992.

[20] K.Sims. Artificial evolution for computer graphics. In Computer

Graphics (Siggraph ’91 proceedings), pages 319–328, 1991.

[21] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and

S. Tragoudas. Fast approximation algorithms for muticommodity

flow problems. Journal of Computer and Systems Sciences, 50:228–

243, 1995.

[22] H. Lipson. Evolutionary robotics and open-ended design automation.

In B. Cohen, editor, Biomimetics. CRC Press, 2005.

[23] J. B. Pollack, L. Hod, H. Gregory, and F. Pablo. Three generations of

automatically designed robots. Artificial Life, 7(3):215–223, Summer

2001.

[24] J. B. Pollack, G. S. Hornby, H. Lipson, and P. Funes. Computer cre-

ativity in the automatic design of robots. Leonardo, 36(2):115–121,

2003.

[25] J. B. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, and R. Wat-

son. Evolutionary techniques in physical robotics. In J. Miller, editor,

Evolvable Systems: from biology to hardware, number 1801 in Lec-

ture Notes in Computer Science, pages 175–186. Springer-Verlag,

2000.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 18

EDITORIAL

[26] J. B. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, and R. A. Wat-

son. Evolutionary techniques in physical robotics. In P. J. Bentley

and D. W. Corne, editors, Creative Evolutionary Systems, pages 511–

523. Morgan Kaufmann, 2001.

[27] J. B. Pollack, H. Lipson, P. Funes, S. G. Ficici, and G. Hornby. Coevolu-

tionary robotics. In J. R. Koza, A. Stoica, D. Keymeulen, and J. Lohn,

editors, The First NASA/DoD Workshop on Evolvable Hardware. IEEE

Press, 1999.

[28] K. Sims. Evolving 3D morphology and behavior by competition. In

R. Brooks and P. Maes, editors, Artificial Life IV, pages 28–39. MIT

Press, 1994.

[29] K. Sims. Evolving virtual creatures. In Computer Graphics. Annual

Conference Series, 1994.

[30] H. Takagi. Interactive evolutionary computation: Fusion of the capa-

bilities of ec optimization and human evaluation. Proceedings of the

IEEE, 89:1275–1296, 2001.

About the author

Pablo Funes. Born Córdoba (Argentina) 1966. Mar-

ried (to Silvia Gerszkowicz, 2004), 2 children. Founded

MAPA Systems, a small-business software company

(1990). Graduated in Mathematics (University of

Buenos Aires, 1994) while programming computers for

fun and to make a living. After a stint as an socio-economic im-

pact modeler/project analyst for the Argentinian government (1994-

1995, Ministry of Economics) moved to the US to pursue a Com-

puter Science PhD. Joined J.B. Pollack’s DEMO lab in Brandeis Uni-

versity (PhD completed 2001). His work focused on tapping what

he calls the "reality effect" - combining artificial evolution and real-

world environments. His work in Evolutionary Design (using toy

bricks, Lego) and in Collective Interactive Evolution (interactive on-

line video game agents, Tron) are examples. Joined Icosystem Cor-

poration of Cambridge, MA in 2001 where he became Director of Re-

search in 2004. There, his work has focused on Interactive Evolution

(e.g. of swarm behaviors, baby names, business simulations, etc.),

Evolutionary Design (web caching algorithms, business strategies)

and Collective Interactive Evolution (Postal routes), Social Networks

and Text Visualization.

Homepage: http://www.icosystem.com

Email: pablo@icosystem.com

SIGEVOlution Autumn 2007, Volume 2, Issue 3 19

http://www.icosystem.com
mailto:pablo@icosystem.com

What Is a Classifier System?
A gentle introduction to accuracy-based classifier systems such as XCS

Stewart W. Wilson, Prediction Dynamics, USA, wilson@prediction-dynamics.com

A learning classifier system (LCS) is an adaptive system that learns to

perform the best action given its input. By “best” is generally meant the

action that will receive the most reward or reinforcement from the sys-

tem’s environment. By “input” is meant the environment as sensed by

the system, usually a vector of numerical values. The set of available ac-

tions depends on the system context: if the system is a mobile robot, the

available actions may be physical: “turn left”, “turn right”, etc. In a clas-

sification context, the available actions may be “yes”, “no”, or “benign”,

“malignant”, etc. In a decision context, for instance a financial one, the

actions might be “buy”, “sell”, etc. In general, an LCS is a simple model

of an intelligent agent interacting with an environment.

An LCS is “adaptive” in the sense that its ability to choose the best

action improves with experience. The source of the improvement is

reinforcement—technically, payoff—provided by the environment. In

many cases, the payoff is arranged by the experimenter or trainer of the

LCS. For instance, in a classification context, the payoff may be 1.0 for

“correct” and 0.0 for “incorrect”. In a robotic context, the payoff could

be a number representing the change in distance to a recharging source,

with more desirable changes (getting closer) represented by larger pos-

itive numbers, etc. Often, systems can be set up so that effective rein-

forcement is provided automatically, for instance via a distance sensor.

Payoff received for a given action is used by the LCS to alter the likelihood

of taking that action, in those circumstances, in the future. To understand

how this works, it is necessary to describe some of the LCS mechanics.

Inside the LCS is a set—technically, a population—of “condition-action

rules” called classifiers. There may be hundreds of classifiers in the pop-

ulation. When a particular input occurs, the LCS forms a so-called match

set of classifiers whose conditions are satisfied by that input. Technically,

a condition is a truth function t(x) which is satisfied for certain input vec-

tors x. For instance, in a certain classifier, it may be that t(x) = 1 (true) for

43 < x3 < 54, where x3 is a component of x, and represents, say, the age

of a medical patient. In general, a classifier’s condition will refer to more

than one of the input components, usually all of them. If a classifier’s

condition is satisfied, i.e. its t(x) = 1, then that classifier joins the match

set and influences the system’s action decision. In a sense, the match set

consists of classifiers in the population that recognize the current input.

Among the classifiers—the condition-action rules—of the match set will

be some that advocate one of the possible actions, some that advocate

another of the actions, and so forth. Besides advocating an action, a

classifier will also contain a prediction of the amount of payoff which,

speaking loosely, “it thinks” will be received if the system takes that ac-

tion. How can the LCS decide which action to take? Clearly, it should pick

the action that is likely to receive the highest payoff, but with all the clas-

sifiers making (in general) different predictions, how can it decide? The

technique adopted is to compute, for each action, an average of the pre-

dictions of the classifiers advocating that action—and then choose the ac-

tion with the largest average. The prediction average is in fact weighted

by another classifier quantity, its fitness, which will be described later but

is intended to reflect the reliability of the classifier’s prediction.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 20

EDITORIAL

The LCS takes the action with the largest average prediction, and in re-

sponse the environment returns some amount of payoff. If it is in a learn-

ing mode, the LCS will use this payoff, P, to alter the predictions of the

responsible classifiers, namely those advocating the chosen action; they

form what is called the action set. In this adjustment, each action set clas-

sifier’s prediction p is changed mathematically to bring it slightly closer

to P, with the aim of increasing its accuracy. Besides its prediction, each

classifier maintains an estimate ε of the error of its predictions. Like p, ε

is adjusted on each learning encounter with the environment by moving

ε slightly closer to the current absolute error |p−P|. Finally, a quantity

called the classifier’s fitness is adjusted by moving it closer to an inverse

function of ε, which can be regarded as measuring the accuracy of the

classifier. The result of these adjustments will hopefully be to improve

the classifier’s prediction and to derive a measure—the fitness—that in-

dicates its accuracy.

The adaptivity of the LCS is not, however, limited to adjusting classifier

predictions. At a deeper level, the system treats the classifiers as an

evolving population in which accurate—i.e. high fitness—classifiers are

reproduced over less accurate ones and the “offspring” are modified by

genetic operators such as mutation and crossover. In this way, the pop-

ulation of classifiers gradually changes over time, that is, it adapts struc-

turally. Evolution of the population is the key to high performance since

the accuracy of predictions depends closely on the classifier conditions,

which are changed by evolution.

Evolution takes place in the background as the system is interacting with

its environment. Each time an action set is formed, there is finite chance

that a genetic algorithm will occur in the set. Specifically, two classifiers

are selected from the set with probabilities proportional to their fitnesses.

The two are copied and the copies (offspring) may, with certain probabili-

ties, be mutated and recombined (“crossed”). Mutation means changing,

slightly, some quantity or aspect of the classifier condition; the action

may also be changed to one of the other actions. Crossover means ex-

changing parts of the two classifiers. Then the offspring are inserted into

the population and two classifiers are deleted to keep the population at a

constant size. The new classifiers, in effect, compete with their parents,

which are still (with high probability) in the population.

The effect of classifier evolution is to modify their conditions so as to

increase the overall prediction accuracy of the population. This occurs

because fitness is based on accuracy. In addition, however, the evolution

leads to an increase in what can be called the “accurate generality” of

the population. That is, classifier conditions evolve to be as general as

possible without sacrificing accuracy. Here, general means maximizing

the number of input vectors that the condition matches. The increase

in generality results in the population needing fewer distinct classifiers

to cover all inputs, which means (if identical classifiers are merged) that

populations are smaller, and also that the knowledge contained in the

population is more visible to humans—which is important in many ap-

plications. The specific mechanism by which generality increases is a

major, if subtle, side-effect of the overall evolution.

Summarizing, a learning classifier system is a broadly-applicable adap-

tive system that learns from external reinforcement and through an in-

ternal structural evolution derived from that reinforcement. In addition

to adaptively increasing its performance, the LCS develops knowledge in

the form of rules that respond to different aspects of the environment

and capture environmental regularities through the generality of their

conditions.

Many important aspects of LCS were omitted in the above presentation,

including among others: use in sequential (multi-step) tasks, modifica-

tions for non-Markov (locally ambiguous) environments, learning in the

presence of noise, incorporation of continuous-valued actions, learning

of relational concepts, learning of hyper-heuristics, and use for on-line

function approximation and clustering. An LCS appears to be a widely

applicable cognitive/agent model that can act as a framework for a diver-

sity of learning investigations and practical applications.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 21

EDITORIAL

About the author

Stewart W. Wilson does research and consults on

learning classifier systems. After receiving S.B. in

physics and Ph.D. in electrical engineering degrees

from MIT, he worked for some years with Edwin H.

Land, inventor of the Polaroid camera, on an interac-

tive teaching machine concept. About 1981 he chanced on John

Holland’s early writings on classifier systems and since that time

has focused on them. He believes that the value of classifier sys-

tems as mental/agent models increases every year, together with

their real-world applicability.

Homepage: http://www.prediction-dynamics.com

Email: wilson@prediction-dynamics.com

SIGEVOlution Autumn 2007, Volume 2, Issue 3 22

http://www.prediction-dynamics.com
mailto:wilson@prediction-dynamics.com

EDITORIAL

Free Book: A Field Guide
To Genetic Programming

A Field Guide To Genetic Programming

Riccardo Poli, William B. Langdon, Nicholas F.

McPhee (with contributions from John R. Koza)

ISBN 978-1-4092-0073-4, 250 pages, 6" x 9",

softcover, (download free pdf!)

Within 24 hours of its sell out launch at

EuroGP-2008 the free PDF of this 250 page book

on genetic programming was down loaded more

than 820 times from lulu.com

Printed copies are also available (for GBP 7.20

plus postage etc.) from lulu.com.

Visit www.gp-field-guide.org.uk for more

information.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 23

http://www.lulu.com/content/2167025
http://evostar.iti.upv.es/index.php?option=com_content&view=frontpage&Itemid=1
http://lulu.com
http://lulu.com
http://www.gp-field-guide.org.uk

Dissertation Corner

Handling Constrained Optimization Problems
and Using Constructive Induction to Improve
Representation Spaces in Learnable Evolution Model

Doctoral Thesis by Janusz Wojtusiak

The learnable evolution model (LEM) is an evolutionary optimization

method which uses machine learning to guide the evolution process

(Michalski, 2000). At each step of evolution a machine learning program

is applied to induce hypotheses why some candidate solutions perform

better and others perform worse. These hypotheses are then instanti-

ated in order to produce new candidate solutions.

This dissertation investigates two closely related problems in the learn-

able evolution model: the automatic improvement of representation

spaces using constructive induction, and the handling of constraints in

optimization problems. The former includes an investigation of differ-

ent aspects of representation space transformations in the context of op-

timization problems, the development of algorithms that perform these

transformations, and algorithms for creating new candidate solutions (via

instantiation) in the improved representation spaces. Handling specific

types of constraints is closely related to the instantiation task in the

modified representation spaces; therefore, the same methods can be

used for solving both problems. Moreover, transformations of represen-

tation spaces may help in handling constraints of other types, that is,

constraints that cannot be handled directly during the instantiation pro-

cess.

The most important contributions of this dissertation include:

Classification of constraints into four classes based on the difficulty

of handling them in the learnable evolution model. The most im-

portant distinction is made between instantiable and general con-

straints. This distinction is made by the presence of an efficient

method for solving them in the instantiation process.

Design and implementation of methods for handling instantiable

constraints given in the form of ordered conditions [ATTR rel EXPR].

Although this type of constraint is very limited and few real world

optimization problems may have constraints in this form, they are

important for instantiation of conditions with constructed attributes.

This is because the algorithm for constructing new attributes can be

constrained to create only attributes in this form.

Design and implementation of three methods for handling general

constraints in the learnable evolution model. The methods are

specifically designed to work with the learnable evolution model and

are based on trimming rules hypothesized from high performing can-

didate solutions, approximation of the feasible area using machine

learning, and using infeasible solutions as a contrast set for learning.

Design and implementation of methods for automatically improving

representation spaces in LEM. Two methods based on data-driven

constructive induction are discussed in this dissertation. One of

the methods constructs new attributes only in the instantiable form

mentioned above, and the other constructs more general attributes.

Design of methods for instantiating in the modified spaces. The

methods are based on the fact that conditions that include con-

structed attributes can be treated as constraints.

The developed algorithms are implemented in the LEM3 (Wojtusiak and

Michalski, 2006) and AQ21 (Wojtusiak et al., 2006) systems and tested on

a set of constrained and non-constrained benchmark optimization prob-

lems. Additionally, two real world applications are presented in this dis-

sertation. The first one concerns optimization of parameters of complex

systems, and the second concerns finding the best discretization of nu-

meric attributes.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 24

EDITORIAL

Bibliography

[1] Michalski, R. S., "LEARNABLE EVOLUTION MODEL Evolutionary Pro-

cesses Guided by Machine Learning," Machine Learning, 38, pp. 9-

40, 2000.

[2] Wojtusiak, J. and Michalski, R. S., "The LEM3 Implementation of

Learnable Evolution Model and Its Testing on Complex Function Op-

timization Problems," Proceedings of Genetic and Evolutionary Com-

putation Conference, GECCO 2006, Seattle, WA, July 8-12, 2006.

[3] Wojtusiak, J., Michalski, R. S., Kaufman, K. and Pietrzykowski, J., "The

AQ21 Natural Induction Program for Pattern Discovery: Initial Ver-

sion and its Novel Features," Proceedings of the 18th IEEE Interna-

tional Conference on Tools with Artificial Intelligence, Washington

D.C., November 13-15, 2006.

Janusz Wojtusiak received his M.Sc. in Computer Sci-

ence from Jagiellonian University and Ph.D. in Com-

putational Sciences and Informatics (concentration

in Computational Intelligence and Knowledge Mining)

from George Mason University. Janusz is as post-

doctoral researcher at the George Mason University Department of

Health Administration and Policy. He also serves as a director of the

GMU Machine Learning and Inference Laboratory. Janusz’s research

interests include health informatics, machine learning, evolutionary

computation, knowledge mining, and related fields. In particular,

his work concerns applications of the above in health care research.

Email: jwojt@mli.gmu.edu

Homepage: www.mli.gmu.edu/jwojt

SIGEVOlution Autumn 2007, Volume 2, Issue 3 25

mailto:jwojt@mli.gmu.edu
http://www.mli.gmu.edu/jwojt

New Issues of Journals

Genetic Programming and Evolvable Machines 9(1)
(www)

Editorial introduction, Wolfgang Banzhaf, pp 1-2 (pdf)

Acknowledgment, pp 3-4 (pdf)

Environmental effects on the coevolution of pursuit and eva-

sion strategies Joc Cing Tay, Cheun Hou Tng and Chee Siong Chan,

pp 5-37 (pdf)

Use of genetic programming to diagnose venous throm-

boembolism in the emergency department Milo Engoren and

Jeffrey A. Kline, pp 39-51 (pdf)

Sporadic model building for efficiency enhancement of the

hierarchical BOA, Martin Pelikan, Kumara Sastry and David E.

Goldberg, pp 53-84 (pdf)

A genetic algorithm for discrete tomography reconstruction,

Cesare Valenti, pp 85-96 (pdf)

Genetic Programming and Evolvable Machines 9(2)
(www)

Theoretical foundations of evolutionary computation, Xi-

aodong Li, Wenjian Luo and Xin Yao, pp 107-108 (pdf)

Quotients of Markov chains and asymptotic properties of the

stationary distribution of the Markov chain associated to an

evolutionary algorithm, Boris Mitavskiy, Jonathan E. Rowe, Alden

Wright and Lothar M. Schmitt, pp 109-123 (pdf)

Detecting the epistatic structure of generalized embedded

landscape, Shude Zhou, Robert B. Heckendorn and Zengqi Sun, pp

125-155 (pdf)

Evolutionary dynamics for the spatial Moran process, P. A.

Whigham and Grant Dick, pp 157-170 (pdf)

Swarm Intelligence 1(2) (www)

Moving targets: collective decisions and flexible choices

in house-hunting ants, Nigel R. Franks, James W. Hooper, Mike

Gumn, Tamsyn H. Bridger, James A. R. Marshall, Roderich Groß and

Anna Dornhaus, pp 81-94 (pdf)

Ant-based and swarm-based clustering, Julia Handl and Bernd

Meyer, pp 95-113 (pdf)

An ant colony optimization approach to flexible pro-

tein–ligand docking, Oliver Korb, Thomas Stützle and Thomas E.

Exner, pp 115-134 (pdf)

Ant colony optimization for real-world vehicle routing prob-

lems: From theory to applications, A. E. Rizzoli, R. Montemanni,

E. Lucibello and L. M. Gambardella, pp 135-151, (pdf)

SIGEVOlution Autumn 2007, Volume 2, Issue 3 26

http://www.springerlink.com/content/104755/
http://www.springerlink.com/content/b63x33j7231652r3/fulltext.pdf
http://www.springerlink.com/content/842181842338890v/fulltext.pdf
http://www.springerlink.com/content/x51u571631j0778p/fulltext.pdf
http://www.springerlink.com/content/e587601u63w46p4x/fulltext.pdf
http://www.springerlink.com/content/966t3rm34n258670/fulltext.pdf
http://www.springerlink.com/content/vu234538w5571323/fulltext.pdf
http://www.springerlink.com/content/104755/
http://www.springerlink.com/content/n45551k374728126/fulltext.pdf
http://www.springerlink.com/content/v2w7wg25807w4437/fulltext.pdf
http://www.springerlink.com/content/a445576r6357r413/fulltext.pdf
http://www.springerlink.com/content/apu2542566823209/fulltext.pdf
http://www.springerlink.com/content/1935-3812
http://www.springerlink.com/content/c52355053wkq2072/fulltext.pdf
http://www.springerlink.com/content/24512vw0lm80110q/fulltext.pdf
http://www.springerlink.com/content/a36760h2j7k2w2w0/fulltext.pdf
http://www.springerlink.com/content/f907x20754736t52/fulltext.pdf

Calls and Calendar

May 2008

Genetic Programming Theory and Practice 2008

May 15-17 (Thur-Sat), 2008 Ann Arbor Michigan USA

Homepage: WWW

GPTP is a small, one-track, invitation-only workshop devoted to the inte-

gration of theory and practice. In particular, it focuses on how theory can

inform practice and what practice reveals about theory. Past workshops

have invited speakers to discuss theoretical work and its value to practi-

tioners of the art, and to review problems and observations from practice

that challenge existing theory.

June 2008

2008 IEEE World Congress on Computational Intelligence

June 1-6, 2008, Hong Kong

Homepage: WWW

The 2008 IEEE World Congress on Computational Intelligence (WCCI

2008) will be held at the Hong Kong Convention and Exhibition Centre

during June 1-6, 2008. Sponsored by the IEEE Computational Intelli-

gence Society, co-sponsored by the International Neural Network Soci-

ety, Evolutionary Programming Society and the Institution of Engineer-

ing and Technology, WCCI 2008 is composed of the 2008 International

Joint Conference on Neural Networks (IJCNN 2008), the 2008 IEEE Inter-

national Conference on Fuzzy Systems (FUZZ-IEEE 2008) and the 2008

IEEE Congress on Evolutionary Computation (CEC 2008). WCCI 2008 will

be the fifth milestone in this series with a glorious history from WCCI

1994 in Orlando, WCCI 1998 in Anchorage, WCCI 2002 in Honolulu, to

WCCI 2006 in Vancouver.

July 2008

GECCO 2008 - Genetic and Evolutionary Computation Conference

July 12-16, 2008, Atlanta, Georgia, USA

Homepage: http://www.sigevo.org/gecco-2008

Conference Program

July 12 Pre-conference free workshops and tutorials

July 13 Pre-conference free workshops and tutorials; in the

evening, opening reception

July 14 Presentations: reviewed papers, late breaking papers,

Evolutionary Computation in Practice, competitions

July 15 Presentations: reviewed papers, late breaking papers,

Evolutionary Computation in Practice, competitions; in the

evening, poster session and reception

July 15 Poster Session and reception

July 16 Presentations: reviewed papers, late breaking papers,

Evolutionary Computation in Practice, competitions

September 2008

PPSN 2008 - Parallel Problem Solving from Nature

September 13-17, 2008, Dortmund, Germany

Homepage: http://www.ppsn2008.org/

Call for paper: download

Deadline April 14, 2008

SIGEVOlution Autumn 2007, Volume 2, Issue 3 27

http://www.cscs.umich.edu/events/gptp2008/
http://www.wcci2008.org/
http://www.sigevo.org/gecco-2008
http://www.ppsn2008.org/
http://ls11-www.cs.uni-dortmund.de/ppsn/ppsn10/data/ppsn2008_cfp.pdf

FRESHLY PRINTED

PPSN X will showcase a wide range of topics in Natural Computing in-

cluding, but not restricted to: Evolutionary Computation, Quantum Com-

putation, Molecular Computation, Neural Computation, Artificial Life,

Swarm Intelligence, Artificial Ant Systems, Artificial Immune Systems,

Self-Organizing Systems, Emergent Behaviors, and Applications to Real-

World Problems.

Paper Presentation

Following the now well-established tradition of PPSN conferences, all ac-

cepted papers will be presented during small poster sessions of about 16

papers. Each session will contain papers from a wide variety of topics,

and will begin by a plenary quick overview of all papers in that session

by a major researcher in the field. Past experiences have shown that

such presentation format led to more interactions between participants

and to a deeper understanding of the papers. All accepted papers will be

published in the Proceedings.

Paper Submission

Researchers are invited to submit original work in the field of natural

computing as papers of not more than 10 pages. Authors are encouraged

to submit their papers in LaTeX. Papers must be submitted in Springer

Verlag’s LNCS style through the conference homepage, here.

ICES 2008 - 8th International Conference of Evolvable Systems:

From Biology to Hardware

September 21-24, 2008. Prague, Czech Republic

Homepage: http://www.fit.vutbr.cz/events/ices2008

The 8th International Conference of Evolvable Systems (ICSE 2008) which

will be held in Prague, September 21-24, 2008. Topics to be covered

include, but are not limited to: Evolutionary hardware design Evolu-

tionary circuit diagnostics and testing, Self-reconfiguring/repairing and

fault tolerant systems, co-evolution of hybrid systems, generative and

developmental approaches, embryonic hardware, hardware/software

co-evolution, intrinsic and extrinsic evolution, real-world applications

of evolvable hardware, on-line hardware evolution, MEMS and nan-

otechnology in evolvable hardware, evolutionary robotics, formal mod-

els for bio-inspired hardware systems adaptive computing, novel de-

vices/testbeds/tools for evolvable hardware.

Sixth International Conference on Ant Colony Optimization and

Swarm Intelligence

September 22–24, 2008. Brussels, Belgium

Homepage: http://iridia.ulb.ac.be/ants2008/

Swarm intelligence is a relatively new discipline that deals with the

study of self-organizing processes both in nature and in artificial sys-

tems. Researchers in ethology and animal behavior have proposed many

models to explain interesting aspects of social insect behavior such as

self-organization and shape-formation. Recently, algorithms inspired by

these models have been proposed to solve difficult computational prob-

lems.

An example of a particularly successful research direction in swarm in-

telligence is ant colony optimization, the main focus of which is on

discrete optimization problems. Ant colony optimization has been ap-

plied successfully to a large number of difficult discrete optimization

problems including the traveling salesman problem, the quadratic as-

signment problem, scheduling, vehicle routing, etc., as well as to routing

in telecommunication networks. Another interesting approach is that of

particle swarm optimization, that focuses on continuous optimization

problems. Here too, a number of successful applications can be found in

the recent literature. [...]

ANTS 2008 will give researchers in swarm intelligence the opportunity to

meet, to present their latest research, and to discuss current develop-

ments and applications.

The three-day conference will be held in Brussels, Belgium, on September

22–24, 2008. Tutorial sessions will be held in the mornings before the

conference program.

Further Information

Up-to-date information will be published on the web site

http://iridia.ulb.ac.be/ants2008/. For information about local arrange-

ments, registration forms, etc., please refer to the above-mentioned web

site or contact the local organizers at the address below.

Conference Address
ANTS 2008

IRIDIA CP 194/6 Tel +32-2-6502729

Université Libre de Bruxelles Fax +32-2-6502715

Av. F. D. Roosevelt 50 http://iridia.ulb.ac.be/ants2008

1050 Bruxelles, Belgium email: ants@iridia.ulb.ac.be

SIGEVOlution Autumn 2007, Volume 2, Issue 3 28

http://www.ppsn2008.org
http://http://www.fit.vutbr.cz/events/ices2008
http://iridia.ulb.ac.be/ants2008/
http://iridia.ulb.ac.be/ants2008/

FRESHLY PRINTED

May 2009

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

May 18-21, 2009, Trondheim, NORWAY

Homepage: www.cec-2009.org

Deadline December 1, 2007

The 2009 IEEE Congress on Evolutionary Computation (CEC 2009) will

be at the Nova Conference Centre and Cinema, Trondheim, Norway dur-

ing May 18-21, 2009. Sponsored by the IEEE Computational Intelligence

Society, co-sponsored by the Evolutionary Programming Society and the

Institution of Engineering and Technology, CEC 2009 continues the suc-

cessful sequence of World-class events going back to 1999.

CEC 2009 will feature a world-class conference that will bring together

researchers and practitioners in the field of evolutionary computation

and computational intelligence from all around the globe. Techni-

cal exchanges within the research community will encompass keynote

speeches, special sessions, tutorials, panel discussions as well as poster

presentations. On top of these, participants will be treated to a series

of social functions, receptions and networking sessions, which will serve

as a vital channel to establish new connections and foster everlasting

friendship among fellow researchers.

The annual IEEE Congress on Evolutionary Computation (CEC) is one of

the leading events in the area of evolutionary computation. CEC covers

all topics in evolutionary computation, including, but not limited to:

Ant colony optimization

Artificial immune systems

Artificial life

Autonomous mental & behaviour development

Bioinformatics & bioengineering

Coevolution & collective behaviour

Cognitive systems & applications

Combinatorial & numerical optimization

Computational finance & economics

Constraint & uncertainty handling

Estimation of distribution algorithms

Evolutionary data mining

Evolutionary design

Evolutionary games

Evolvable hardware & software

Evolutionary intelligent agents

Evolutionary learning systems

Evolving neural networks & fuzzy systems

Molecular & quantum computing

Particle swarm intelligence

Representation & operators

Researchers are invited to contribute high-quality papers to CEC 2009. All

papers are to be submitted electronically through the Congress website

by November 1, 2008. All submitted papers will be refereed by experts

in the fields based on the criteria of originality, significance, quality, and

clarity. In addition, we are looking for high quality proposals for Special

Sessions and Tutorials for the Congress. More details on all of all of these

are below.

Call for Contributed Papers

Prospective authors are invited to contribute high-quality papers to

CEC2009. All papers are to be submitted electronically through the

Congress website. For general inquiries, please contact General Chair

Andy Tyrrell at amt@ohm.york.ac.uk. For program inquiries, contact Pro-

gram Chair Pauline Haddow at Pauline.Haddow@idi.ntnu.no.

Call for Special Sessions

CEC 2009 Program Committee solicits proposals for special sessions

within the technical scopes of the congress. Special sessions, to be or-

ganised by internationally recognised experts, aim to bring together re-

searchers in special focused topics. Papers submitted for special ses-

sions are to be peer-reviewed with the same criteria used for the con-

tributed papers. Researchers interested in organising special sessions

are invited to submit formal proposals to the Special Session Chair Jon

SIGEVOlution Autumn 2007, Volume 2, Issue 3 29

http://www.cec-2009.org
mailto:amt@ohm.york.ac.uk
mailto:Pauline.Haddow@idi.ntnu.no

FRESHLY PRINTED

Timmis at jt517@ohm.york.ac.uk. A special session proposal should in-

clude the session title, a brief description of the scope and motivation,

names, contact information and brief CV of the organisers.

Call for Tutorials

CEC 2009 will also feature pre-congress tutorials covering fundamen-

tal and advanced computational intelligence topics. A tutorial proposal

should include title, outline, expected enrollment and presenter biogra-

phy. Tutorials are expected to run for 2 hours each. Researchers inter-

ested in organising tutorials are invited to submit formal proposals to the

Tutorial Chair Stephen Smith at sls@ohm.york.ac.uk.

Important Dates:

Special Session proposals: September 1, 2008

Paper submissions: November 1, 2008

Tutorial proposals: December 1, 2008

Notification of acceptance: January 16, 2009

Final paper submission: February 16, 2009

More information can be found at: www.cec-2009.org. For

general inquiries, please contact General Chair Andy Tyrrell at

amt@ohm.york.ac.uk.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 30

mailto:jt517@ohm.york.ac.uk
http://www.cec-2009.org
mailto:amt@ohm.york.ac.uk

About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate to an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.

SIGEVOlution Autumn 2007, Volume 2, Issue 3 31

https://campus.acm.org/public/gensigqj/gensigqj_control.cfm?promo=QJSIG&offering=052&form_type=SIG
mailto:editor@sigevolution.org
http://www.sigevolution.org

	Evolving Toy Brick Structures
	Mutation and Crossover
	Development
	Testing
	Evolutionary Algorithm
	Buildable vs. Incrementally Buildable

	Stability of Lego Structures
	Networks of Torque Propagation
	NTP Algorithms
	Greedy Algorithm
	LP Solver
	Embedded Solver

	 Evolving Simple Structures with EvoCAD
	Evolved Structures
	Long Bridge
	Crane
	 Tree
	Table

	Discussion

